亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Risk factors analysis and prediction models of obesity in college students based on dietary patterns

肥胖 计算机科学 心理学 环境卫生 医学 内科学
作者
Jiawang Bai,M. Chen,Wei Hou,Han Yan,Jihong Shao,Ying Zhang,Yang Jiao,Hui Hua,Xiangmei Ren
出处
期刊:Frontiers in Nutrition [Frontiers Media]
卷期号:12
标识
DOI:10.3389/fnut.2025.1598946
摘要

Overweight and obesity among college students have become significant public health concerns. This study aims to develop a nomogram model for assessing obesity risk in college students. A cross-sectional study was conducted among college students in Xuzhou. Demographic, dietary, and lifestyle information was obtained through self-administered questionnaires, while body composition was assessed using the InBody 570 analyzer. Dietary patterns and obesity prevalence were examined through multiple indicators. Principal component analysis (PCA), logistic regression, and a non-invasive risk assessment model based on percentage of body fat (PBF) were applied. The vegetable meat grain dietary pattern and milk egg dietary pattern were associated with a reduced risk of PBF (P < 0.01), while the snack mode dietary pattern and aquatic meat dietary pattern increased the risk of PBF (P < 0.05). Binary logistic regression identified gender, physical activity, late-night snacking, regular meals, and a healthy diet as key predictors of PBF obesity in college students. The model achieved an area under curve (AUC) of 0.805, with a non-significant Hosmer-Lemeshow (H-L) test (P > 0.05). Decision curve analysis (DCA) showed that the model outperformed extreme curves, indicating its reliability. This study highlights the high prevalence of overweight and obesity among college students and the importance of using multiple indicators for comprehensive evaluation. The developed PBF-based nomogram model demonstrates potential for obesity screening but requires further validation in diverse populations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助KEN采纳,获得20
27秒前
周哲应助唐泽雪穗采纳,获得40
31秒前
37秒前
唐泽雪穗发布了新的文献求助40
45秒前
彩虹儿应助否认冶游史采纳,获得10
1分钟前
周哲应助唐泽雪穗采纳,获得30
2分钟前
2分钟前
2分钟前
2分钟前
唐泽雪穗发布了新的文献求助30
2分钟前
香蕉觅云应助超帅发夹采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
level完成签到 ,获得积分10
3分钟前
Yingkun_Xu发布了新的文献求助10
3分钟前
江望雪完成签到,获得积分10
3分钟前
研友_LwM9JZ完成签到,获得积分10
3分钟前
M3L2发布了新的文献求助30
3分钟前
SciGPT应助科研通管家采纳,获得10
3分钟前
斯文败类应助科研通管家采纳,获得150
3分钟前
M3L2完成签到,获得积分10
3分钟前
eazin完成签到 ,获得积分10
4分钟前
科研通AI5应助如沐春风采纳,获得10
4分钟前
4分钟前
如沐春风发布了新的文献求助10
4分钟前
xiaoguo完成签到,获得积分10
5分钟前
彩虹儿应助科研通管家采纳,获得10
5分钟前
周哲应助唐泽雪穗采纳,获得20
6分钟前
6分钟前
唐泽雪穗发布了新的文献求助20
6分钟前
一只商路神完成签到 ,获得积分10
6分钟前
花落无声完成签到 ,获得积分10
6分钟前
我是老大应助如沐春风采纳,获得10
7分钟前
7分钟前
超帅发夹发布了新的文献求助10
7分钟前
彩虹儿应助科研通管家采纳,获得10
7分钟前
7分钟前
domingo完成签到,获得积分10
8分钟前
可爱的函函应助wop111采纳,获得10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4858552
求助须知:如何正确求助?哪些是违规求助? 4154245
关于积分的说明 12874401
捐赠科研通 3904730
什么是DOI,文献DOI怎么找? 2145382
邀请新用户注册赠送积分活动 1164520
关于科研通互助平台的介绍 1065861