亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Artificial Intelligence-Based Method for Risk Stratification of Urothelial Carcinoma from Liquid-Based Urine Cytology Whole-Slide Images

作者
Lei Xiong,Jia Li,Xinyi Jin,Xinyi Cao,Chen Pan,Zichang Liu,X Zhang,Ying Li,Lizhi Zhang,Jianbo Wang,Chang Shi,Fengqi Fang
出处
期刊:Acta Cytologica [S. Karger AG]
卷期号:: 1-12
标识
DOI:10.1159/000548615
摘要

Introduction: Urine cytology is a noninvasive and widely used approach for the early detection of urothelial carcinoma (UC), but its diagnostic accuracy is limited, particularly for low-grade lesions. This study aimed to develop a novel artificial intelligence (AI)-based framework for risk stratification of UC from whole-slide images (WSIs), offering a promising solution to enhance the diagnostic accuracy of urine cytology. Methods: A total of 385 urine cytology slides were included and stratified into three diagnostic groups based on cytological evaluation: negative for high-grade urothelial carcinoma (NHGUC), low risk (including atypical urothelial cells and low-grade urothelial carcinoma [LGUC]), and high risk (including suspicious for high-grade urothelial carcinoma and high-grade urothelial carcinoma). Following digitization into WSIs, expert pathologists conducted detailed cell-level annotation. Cell detection and segmentation were performed using RTMDet and DuckNet, and the extracted features were aggregated into slide-level representations for training and evaluation of classification models. Results: Support vector machine demonstrated the highest overall performance among the classifiers, with an accuracy of 79%, recall of 79%, and a specificity of 90%. The model demonstrated strong classification performance across three risk stratifications. The high-risk group achieved a sensitivity of 73.1% and specificity of 90.2%, while the low-risk group showed a sensitivity of 81.8% and specificity of 89.1%. Precision-recall curves indicated that the NHGUC group achieved the highest average precision, reaching 0.93, followed by the high-risk group at 0.85 and the low-risk group at 0.82. ROC analysis further demonstrated strong discriminative capability for three risk groups, with the area under the curve measured at 0.95 for NHGUC and 0.91 for both the low-risk and High-risk groups. Conclusion: The proposed AI-assisted framework shows robust and interpretable performance in stratifying UC cytological categories from WSIs. It holds strong potential as a supportive tool in urine cytology, especially in assisting with the diagnosis of high-risk UC cases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cassie发布了新的文献求助10
26秒前
42秒前
小洛完成签到 ,获得积分10
46秒前
TiAmo发布了新的文献求助10
47秒前
48秒前
柟枫发布了新的文献求助10
1分钟前
科研通AI5应助超帅丹亦采纳,获得10
1分钟前
1分钟前
TiAmo发布了新的文献求助10
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
lalala完成签到 ,获得积分10
1分钟前
李健的粉丝团团长应助Nut采纳,获得10
2分钟前
2分钟前
TiAmo完成签到 ,获得积分10
2分钟前
89发布了新的文献求助10
2分钟前
2分钟前
2分钟前
欢喜的怜菡完成签到,获得积分20
2分钟前
棠真完成签到 ,获得积分10
2分钟前
89完成签到,获得积分10
2分钟前
2分钟前
moomomomomo完成签到,获得积分10
2分钟前
杜钿湄完成签到 ,获得积分10
3分钟前
Jasper应助平常的乘云采纳,获得10
3分钟前
2258完成签到,获得积分10
3分钟前
Hello应助勤劳落雁采纳,获得10
3分钟前
3分钟前
鬼笔环肽应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
柟枫发布了新的文献求助10
3分钟前
颜枫莹完成签到,获得积分10
3分钟前
3分钟前
tutu发布了新的文献求助10
3分钟前
cqbrain123完成签到,获得积分10
4分钟前
4分钟前
勤劳落雁发布了新的文献求助10
4分钟前
wanci应助JY采纳,获得10
4分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5173715
求助须知:如何正确求助?哪些是违规求助? 4363430
关于积分的说明 13585465
捐赠科研通 4212010
什么是DOI,文献DOI怎么找? 2310119
邀请新用户注册赠送积分活动 1309205
关于科研通互助平台的介绍 1256607