Skin Adhesive 3D-Printable BSA-Amyloid/Cellulose Hybrid Hydrogel Film for Rapid Wound Healing and Skin Regeneration with Enhanced Antioxidant and Anti-Inflammatory Properties
Natural polymer-based hydrogels closely mimic the extracellular matrix, making them ideal for supporting cell growth and tissue regeneration. Recent advancements in tuning their porosity, morphology, and size have helped overcome key challenges in tissue engineering, such as vascularization and multicellular integration. However, their clinical use is often limited by drawbacks, such as low mechanical strength, structural instability, high production costs, and limited reproducibility. In this work, we present a skin-adhesive, 3D-printable/injectable hybrid hydrogel composed of natural protein and cellulose. This hybrid hydrogel overcomes the limitations of conventional systems by enhancing mechanical strength, scaffold stability, reproducibility, cost-effectiveness, and adhesive properties while preserving high biocompatibility and biodegradability. Using the same formulation, a wound dressing material is fabricated and applied at the wound site either by suturing or as an adhesive film. Furthermore, the hydrogel exhibits inherent antibacterial, antioxidant (60% of radical scavenging), anti-inflammatory, cell viability (up to 90%), and cell migration properties that significantly promote wound healing. This multifunctional hybrid hydrogel offers a promising solution for next-generation wound dressing applications and contributes to the advancement of bioactive and customizable materials in regenerative medicine.