掺杂剂
氧烷
材料科学
纳米线
兴奋剂
光电子学
发光
纳米尺度
半导体
纳米技术
光谱学
物理
量子力学
作者
Jaime Dolado,Paula Pérez‐Peinado,Daniel Carrasco,Ruth Martínez-Casado,Valentina Bonino,Emilio Nogales,Bianchi Méndez,Gema Martı́nez-Criado
出处
期刊:Nano Letters
[American Chemical Society]
日期:2025-07-11
卷期号:25 (29): 11299-11307
标识
DOI:10.1021/acs.nanolett.5c02409
摘要
Integration of semiconductor nanowires is critical for developing scalable and versatile nanodevices, but challenges remain in tailoring optical emission, forming reliable p-n junctions, and ensuring consistent nanoscale interconnection. Here, we investigate Ga2O3/SnO2 multiwire architectures using synchrotron-based X-ray fluorescence (XRF), X-ray excited optical luminescence (XEOL), X-ray absorption near-edge spectroscopy (XANES), and first-principles simulations. We map dopant distribution, analyze nanoscale optical responses, and determine dopant atomic coordination. The central wire is predominantly Sn-doped Ga2O3, while crossed wires are Ga-doped SnO2. XEOL maps reveal a pronounced enhancement of the 3.5 eV ultraviolet emission in Ga2O3 at the junctions, enabling controlled optical modulation. XANES and ab initio calculations confirm that Sn and Ga dopants preferentially occupy octahedral sites, introducing donor levels in Ga2O3 and acceptor levels in SnO2. This research significantly advances our understanding of dopant effects in complex semiconductor nanowire systems, paving the way for controlled optical emissions in Ga2O3/SnO2 multiwire architectures.
科研通智能强力驱动
Strongly Powered by AbleSci AI