亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning-based Classification of Adrenal Tumors Using Clinical, Hormonal, and Body Composition Data

激素 内分泌学 内科学 作文(语言) 医学 哲学 语言学
作者
Seung Shin Park,Jongsung Noh,Jinhee Kim,Tae-Sung Kim,H. Seo,Chang Ho Ahn,Jaegul Choo,Man Ho Choi,Jung Hee Kim
出处
期刊:European journal of endocrinology [Oxford University Press]
卷期号:193 (2): 204-215
标识
DOI:10.1093/ejendo/lvaf145
摘要

Accurate diagnosis of adrenal tumors, including mild autonomous cortisol secretion (MACS), adrenal Cushing's syndrome (ACS), primary aldosteronism (PA), pheochromocytoma (PCC), and nonfunctioning adrenal adenomas (NFAs), is crucial but challenging. We aimed to develop a machine learning (ML)-based single-step diagnostic method for differentiating adrenal tumors by integrating clinical data, serum adrenal hormone profiles (SAPs), and body composition data. A total of 641 patients with adrenal tumors (MACS = 141, ACS = 64, PA = 265, PCC = 78, and NFA = 93), excluding adrenal metastases and adrenocortical carcinoma, were enrolled from Seoul National University Hospital. Patients were randomly divided into training and test cohorts at a 4:1 ratio. The ML models were developed to differentiate adrenal tumors using 32 clinical data points, 49 SAP markers, and 15 body composition data points. The best-performing ML model for differentiating all 5 adrenal tumors achieved a balanced accuracy of 0.78, sensitivity of 0.77, specificity of 0.93, and area under the curve (AUC) of 0.89. To distinguish MACS, ACS, PA, and PCC from NFA, the accuracies were 0.85, 0.94, 0.78, and 0.86, with AUCs of 0.96, 0.99, 0.90, and 0.94, respectively. The ML model differentiating between NFA and the other functioning adrenal tumors exhibited an accuracy of 0.75 and an AUC of 0.79. The SAP features were identified as the most critical for differentiation, whereas body composition data contributed only minimally. The ML model demonstrates high diagnostic accuracy in differentiating adrenal tumor subtypes by integrating clinical data, body composition, and SAP, potentially reducing the need for invasive procedures and aiding clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
脑洞疼应助可靠的马里奥采纳,获得10
7秒前
顾矜应助TK采纳,获得10
9秒前
wangjun完成签到,获得积分10
11秒前
yangzai完成签到 ,获得积分10
12秒前
15秒前
丸子完成签到 ,获得积分10
17秒前
24秒前
29秒前
哈西辣妈发布了新的文献求助10
36秒前
满意的小鸽子完成签到,获得积分10
39秒前
秋天完成签到,获得积分10
47秒前
eltiempo完成签到 ,获得积分10
59秒前
温暖寒风完成签到,获得积分10
1分钟前
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得70
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
年鱼精完成签到 ,获得积分10
1分钟前
竹青完成签到 ,获得积分10
1分钟前
琉璃完成签到,获得积分10
1分钟前
王绪威完成签到,获得积分10
1分钟前
科研不了一点完成签到,获得积分10
1分钟前
妤懿完成签到 ,获得积分10
1分钟前
Hello应助null采纳,获得20
1分钟前
1分钟前
SeL_EroS完成签到,获得积分10
1分钟前
null重新开启了yihuiqing文献应助
1分钟前
2分钟前
青蛙打不过小熊完成签到,获得积分10
2分钟前
2分钟前
2分钟前
CodeCraft应助可靠的马里奥采纳,获得10
2分钟前
杨天天完成签到 ,获得积分10
3分钟前
breeze完成签到,获得积分10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5116090
求助须知:如何正确求助?哪些是违规求助? 4322826
关于积分的说明 13469565
捐赠科研通 4154986
什么是DOI,文献DOI怎么找? 2276918
邀请新用户注册赠送积分活动 1278790
关于科研通互助平台的介绍 1216768