亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A machine-learning approach to model risk and protective factors of vulnerability to depression

萧条(经济学) 心情 孤独 心理干预 心理学 临床心理学 脆弱性(计算) 风险因素 医学 精神科 内科学 计算机科学 计算机安全 宏观经济学 经济
作者
June M. Liu,Mengxia Gao,Ruibin Zhang,Nichol M. L. Wong,Jingsong Wu,Chetwyn C. H. Chan,Tatia M.C. Lee
出处
期刊:Journal of Psychiatric Research [Elsevier]
卷期号:175: 374-380 被引量:3
标识
DOI:10.1016/j.jpsychires.2024.04.048
摘要

There are multiple risk and protective factors for depression. The association between these factors with vulnerability to depression is unclear. Such knowledge is an important insight into assessing risk for developing depression for precision interventions. Based on the behavioral data of 496 participants (all unmarried and not cohabiting, with a college education level or above), we applied machine-learning approaches to model risk and protective factors in estimating depression and its symptoms. Then, we employed Random Forest to identify important factors which were then used to differentiate participants who had high risk of depression from those who had low risk. Results revealed that risk and protective factors could significantly estimate depression and depressive symptoms. Feature selection revealed four key factors including three risk factors (brooding, perceived loneliness, and perceived stress) and one protective factor (resilience). The classification model built by the four factors achieved an ROC-AUC score of 75.50% to classify the high- and low-risk groups, which was comparable to the classification performance based on all risk and protective factors (ROC-AUC = 77.83%). Based on the selected four factors, we generated a mood vulnerability index useful for identifying people's risk for depression. Our findings provide potential clinical insights for developing quick screening tools for mood disorders and potential targets for intervention programs designed to improve depressive symptoms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Timelapse发布了新的文献求助10
6秒前
ZhiyunXu2012完成签到 ,获得积分10
25秒前
35秒前
39秒前
惘然111222发布了新的文献求助10
46秒前
46秒前
51秒前
51秒前
51秒前
beginnerofsci发布了新的文献求助10
52秒前
科研通AI6应助科研通管家采纳,获得10
52秒前
toutou应助科研通管家采纳,获得10
52秒前
toutou应助科研通管家采纳,获得10
52秒前
toutou应助科研通管家采纳,获得10
52秒前
惘然111222完成签到,获得积分10
52秒前
1分钟前
1分钟前
Isabelle完成签到 ,获得积分10
1分钟前
blenx完成签到,获得积分10
2分钟前
beginnerofsci完成签到,获得积分10
2分钟前
2分钟前
toutou应助科研通管家采纳,获得10
2分钟前
包破茧完成签到,获得积分10
2分钟前
d00007驳回了李健应助
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
wanci应助搞怪的书瑶采纳,获得10
3分钟前
坚定文龙发布了新的文献求助10
3分钟前
3分钟前
d00007发布了新的文献求助10
3分钟前
坚定文龙完成签到,获得积分10
3分钟前
勤恳的雅容完成签到,获得积分10
4分钟前
hugeyoung发布了新的文献求助20
4分钟前
淡淡的无敌完成签到 ,获得积分10
4分钟前
Ethan完成签到,获得积分10
4分钟前
4分钟前
sys549发布了新的文献求助10
4分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
4分钟前
toutou应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772787
求助须知:如何正确求助?哪些是违规求助? 5602222
关于积分的说明 15430040
捐赠科研通 4905627
什么是DOI,文献DOI怎么找? 2639572
邀请新用户注册赠送积分活动 1587470
关于科研通互助平台的介绍 1542416