IMG-09. A DEEP LEARNING-BASED APPROACH FOR BRAIN TISSUE EXTRACTION USING MULTI- AND SINGLE-PARAMETRIC MRI IN PEDIATRICS

深度学习 计算机科学 参数统计 人工智能 模式识别(心理学) 机器学习 数学 统计
作者
Deep Gandhi,Anurag Gottipati,Wenxin Tu,Ariana Familiar,Shuvanjan Haldar,Neda Khalili,Paarth Jain,Karthik Viswanathan,Phillip B. Storm,Adam Resnick,Jeffrey B. Ware,Arastoo Vossough,Ali Nabavizadeh,Anahita Fathi Kazerooni
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:26 (Supplement_4)
标识
DOI:10.1093/neuonc/noae064.346
摘要

Abstract BACKGROUND Skull-stripping, the process of extracting brain tissue from MR images, is an important step for tumor segmentation and downstream imaging-based analytics such as AI-powered radiomic feature extraction. Existing skull-stripping models, designed for pediatric or adult patients, show limitations in accurately segmenting tumors in sellar/suprasellar regions. This limitation hinders their reliable application across different histologies of pediatric brain tumors. We propose a deep learning approach for fully automated skull-stripping, compatible with both single- or multi-parametric MRI sequences. METHODS We developed 3D nnU-Net models trained on preprocessed MRI sequences (including pre- and post-contrast T1w, T2w, and FLAIR) from 336 patients with brain tumors across multiple tumor histologies such as low-grade, high-grade and brainstem gliomas, medulloblastoma, ependymoma, etc., aged between 3 months and 20 years (median age, 8.5 years). The training utilized manually generated brain masks, including the sellar/suprasellar region, from 153 patients and employed 5-fold cross-validation to split the data into inner training-validation sets. The models were then tested on a withheld set of 183 subjects. Additionally, we trained a single-parametric model on individual images, resulting in 612 training and 732 testing cases. Model performance was evaluated using the Dice similarity metric for segmenting both the entire brain and slices specifically containing the sella turcica. RESULTS The multi-parametric and single-parametric models achieved mean±sd Dice scores of 0.981±0.008 (median=0.983) and 0.979±0.009 (median=0.981), respectively. For the sellar/suprasellar slices, the scores were 0.983±0.009 (median=0.986) and 0.981±0.012 (median=0.984), respectively. These results indicate a high precision in segmenting not only the entire brain volume, but also the sellar/suprasellar region. CONCLUSION Our proposed deep learning-based skull-stripping approach, leveraging both multi-parametric and single-parametric MRI inputs, demonstrates excellent accuracy. These models, made publicly available, have potential for improving auto-processing pipelines in pediatric brain tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hy完成签到,获得积分10
3秒前
清爽天川完成签到,获得积分10
5秒前
5秒前
梦溪完成签到 ,获得积分10
8秒前
wjw完成签到,获得积分10
8秒前
斯寜应助杨桃采纳,获得10
9秒前
woobinhua发布了新的文献求助10
9秒前
Mr.Left完成签到,获得积分10
16秒前
evvj完成签到,获得积分10
19秒前
19秒前
科研通AI5应助唐寻菡采纳,获得10
19秒前
执着绿草完成签到 ,获得积分10
20秒前
子非魚发布了新的文献求助30
23秒前
钱念波发布了新的文献求助10
24秒前
CipherSage应助niu采纳,获得10
25秒前
情怀应助taster采纳,获得10
26秒前
小二郎应助woobinhua采纳,获得10
28秒前
丰都残卷完成签到,获得积分10
29秒前
Iron_five完成签到 ,获得积分10
29秒前
烟花应助ssy采纳,获得10
31秒前
谦让寻凝完成签到 ,获得积分10
31秒前
32秒前
zyz完成签到,获得积分10
32秒前
Aixia完成签到,获得积分10
35秒前
social_yjj完成签到,获得积分10
36秒前
Akim应助Quentin9998采纳,获得10
36秒前
李健应助科研通管家采纳,获得10
37秒前
英俊的铭应助科研通管家采纳,获得10
37秒前
大模型应助科研通管家采纳,获得10
37秒前
37秒前
37秒前
bc应助科研通管家采纳,获得10
37秒前
Aixia发布了新的文献求助10
38秒前
如果完成签到,获得积分10
39秒前
fd163c发布了新的文献求助10
40秒前
linhante完成签到 ,获得积分10
41秒前
42秒前
yellow完成签到 ,获得积分10
43秒前
lalala发布了新的文献求助10
45秒前
ssy发布了新的文献求助10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780920
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10227030
捐赠科研通 3041612
什么是DOI,文献DOI怎么找? 1669520
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734