Invasive mechanical ventilation probability estimation using machine learning methods based on non-invasive parameters

预警得分 接收机工作特性 机械通风 计算机科学 预警系统 机器学习 人工智能 算法 急诊医学 医学 电信 精神科
作者
Huiquan Wang,Chengyi Wang,Jiameng Xu,Jing Yuan,Guanjun Liu,Guang Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:79: 104193-104193 被引量:1
标识
DOI:10.1016/j.bspc.2022.104193
摘要

Timely and accurate prediction of the requirement for invasive mechanical ventilation (IMV) can reduce patient mortality. Existing methods (traditional risk adjustment algorithms, clinical observation, et.) use laboratory parameters requiring specialized biochemical analysis, which is difficult to obtain in the pre-hospital emergency setting and does not accurately predict the requirement for IMV. In this study, 20 non-invasive parameters including patient demographic parameters, physiological parameters, Glasgow score and ventilator parameters, were extracted from the Medical Information Mart for Intensive Care III (MIMIC III) database. A real-time early warning model of IMV requirement was developed using classical seven machine learning methods in different categories and compared with two traditional risk adjustment algorithms. The prediction results using Lightgbm were 0.917 (95 %CI:0.914–0.922) for area under receiver operating characteristic curve (AUC) and 0.853 for accuracy (ACC) (95 %CI:0.850–0.856), outperforming the traditional risk adjustment algorithm, which were 0.615 and 0.533 respectively. The addition of invasive parameters increased the AUC value of the model by 0.009. A real-time early warning algorithm was developed in this paper for IMV requirement based on non-invasive parameters using seven learning methods, which proved to be superior to the traditional risk adjustment algorithm. Using real-time clinical data, the proposed algorithm can calculate current and future requirement for IMV requirement at any point in time during the stay of a patient in the ICU. Finally, it provides technical support for a wide range of applications in remote areas and disaster sites, where invasive parameters are unavailable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xlb发布了新的文献求助30
刚刚
乐乐应助张小北采纳,获得10
刚刚
1秒前
刻苦黑米完成签到,获得积分10
1秒前
顺利毕业发布了新的文献求助10
2秒前
2秒前
野性的小松鼠完成签到 ,获得积分10
3秒前
斯文忆梅应助xiaoxioayixi采纳,获得10
3秒前
Owen应助HonamC采纳,获得10
3秒前
lihongjie发布了新的文献求助10
3秒前
5秒前
糟糕的铁锤应助南风采纳,获得50
6秒前
小橙子完成签到 ,获得积分10
6秒前
李爱国应助树123采纳,获得10
7秒前
染东发布了新的文献求助10
8秒前
8秒前
8秒前
zho应助阿秋秋秋采纳,获得10
10秒前
Orange应助donk采纳,获得10
10秒前
彭于彦祖应助景三采纳,获得30
10秒前
11秒前
11秒前
酷波er应助婳嬨采纳,获得10
11秒前
11秒前
11秒前
12秒前
SYLH应助dhlswpu采纳,获得10
12秒前
12秒前
科研通AI2S应助dhlswpu采纳,获得10
12秒前
SYLH应助dhlswpu采纳,获得10
12秒前
科研通AI2S应助dhlswpu采纳,获得10
12秒前
13秒前
细腻慕儿发布了新的文献求助20
14秒前
领导范儿应助yyymmma采纳,获得10
14秒前
cc发布了新的文献求助30
15秒前
HonamC发布了新的文献求助10
15秒前
16秒前
16秒前
斐嘿嘿发布了新的文献求助10
16秒前
树123发布了新的文献求助10
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792160
求助须知:如何正确求助?哪些是违规求助? 3336398
关于积分的说明 10280823
捐赠科研通 3053076
什么是DOI,文献DOI怎么找? 1675455
邀请新用户注册赠送积分活动 803469
科研通“疑难数据库(出版商)”最低求助积分说明 761401