甲烷氧化偶联
催化作用
甲烷
选择性
化学
表(数据库)
乙烯
吞吐量
分子描述符
生物系统
计算机科学
机器学习
有机化学
数据库
生物
数量结构-活动关系
电信
无线
作者
Sora Ishioka,Aya Fujiwara,Sunao Nakanowatari,Lauren Takahashi,Toshiaki Taniike,Keisuke Takahashi
出处
期刊:ACS Catalysis
[American Chemical Society]
日期:2022-09-08
卷期号:12 (19): 11541-11546
被引量:28
标识
DOI:10.1021/acscatal.2c03142
摘要
Catalysts descriptors for representing catalytic activities have been challenging in regard to machine learning. Machine learning and catalyst big data generated from high-throughput experiments are combined to explore the catalyst descriptors. Catalyst descriptors are designed using the physical quantities from the periodic table in the oxidative coupling of methane (OCM) reaction. Machine learning unveils the five key physical quantities representing ethylene/ethane selectivity (C2s) in the OCM reaction, where machine learning predicted three catalysts to have high C2s values. Experiments confirm that the proposed three catalysts have high C2s values in the OCM reaction. Hence, the physical quantities can be used as alternative descriptors for designing heterogeneous catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI