过饱和度
降水
化学
动力学
酸性矿井排水
冷凝
热力学
材料科学
环境化学
有机化学
气象学
物理
量子力学
作者
Behzad Vaziri Hassas,Younes Shekarian,Mohammad Rezaee
标识
DOI:10.1016/j.resconrec.2022.106654
摘要
Critical elements (CEs) have been in the spotlight recently due to their promising role in green energy transition and high-tech developments. Secondary resources, such as acid mine drainage (AMD) are of great potential source for these elements. Selective recovery of CEs such as Al, rare earth elements (REEs), Co, and Mn from AMD is deemed viable. To design and scale up the CEs recovery process, parameters such as kinetics and other thermodynamics parameters are vital. This work determined the reaction rates for precipitation of the Al, REEs, Co, and Mn in a three-staged precipitation process. The experimental data were examined with Avrami and second-order kinetics models. Analyzing the parameters driving and controlling the precipitation showed that the mechanism in the precipitation of elements from the solution is the supersaturation of species. Furthermore, the condensation and polymerization of the metal ions with ligand molecules results in large polycation complexation and growth.
科研通智能强力驱动
Strongly Powered by AbleSci AI