Evaluation of modified fire hawk optimizer for new modification in double diode solar cell model

光伏系统 计算机科学 均方误差 堆(数据结构) 算法 数学优化 模拟 数学 工程类 统计 电气工程
作者
Mokhtar Said,Alaa A. K. Ismaeel,Ali M. El‐Rifaie,Fatma A. Hashim,Anas Bouaouda,Adil Amirjanov,Almoataz Y. Abdelaziz,Essam H. Houssein
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-81125-3
摘要

The evaluation of photovoltaic (PV) model parameters has gained importance considering emerging new energy power systems. Because weather patterns are unpredictable, variations in PV output power are nonlinear and periodic. It is impractical to rely on a time series because traditional power forecast techniques are based on linearity. As a result, meta-heuristic algorithms have drawn significant attention for their exceptional performance in extracting characteristics from solar cell models. This study analyzes a new modification in the double-diode solar cell model (NMDDSCM) to evaluate its performance compared with the traditional double-diode solar cell model (TDDSCM). Modified Fire Hawk Optimizer (mFHO) is applied to identify the photovoltaic parameters (PV) of the TDDSCM and NMDDSCM models. The Modified Fire Hawks Optimizer (mFHO) algorithm, which incorporates two enhancement strategies to address the shortcomings of FHO. The experimental performance is evaluated by investigating the scores achieved by the method on the CEC-2022 standard test suite. The parameter extraction of the TDDSCM and NMDDSCM is an optimization problem treated with an objective function to minimize the root mean square error (RMSE) between the calculated and the measured data. Real data of the R.T.C France solar cell is used to verify the performance of NMDDSCM. The effectiveness of the mFHO algorithm is compared with other algorithms such as Teaching Learning-Based Optimization (TLBO), Grey Wolf Optimizer (GWO), Fire Hawk Optimizer (FHO), Moth Flame Optimization (MFO), Heap Based optimization (HBO), and Chimp Optimization Algorithm (ChOA). The best objective function for the TDDSCM equal to 0.000983634 and its value for NMDDSCM equal to 0.000982485 that is achieved by the mFHO algorithm. The obtained results have proved the NMDDSCM's superiority over TDDSCM for all competitor techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
香妃发布了新的文献求助10
1秒前
1秒前
dsdingding发布了新的文献求助10
1秒前
叮叮猫发布了新的文献求助10
2秒前
学习之人发布了新的文献求助10
2秒前
vi6bjf发布了新的文献求助10
4秒前
呼延含双完成签到,获得积分10
5秒前
烟花应助几厘采纳,获得10
5秒前
Cookies发布了新的文献求助10
6秒前
8秒前
柏林寒冬应助倔驴采纳,获得10
8秒前
dreamlightzy发布了新的文献求助10
11秒前
奋斗的萝发布了新的文献求助10
12秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
16秒前
lhx发布了新的文献求助10
18秒前
zhouzehua1003完成签到,获得积分20
19秒前
20秒前
柏林寒冬应助倔驴采纳,获得10
21秒前
24秒前
暮春完成签到,获得积分10
24秒前
奥特超曼发布了新的文献求助10
25秒前
fxf发布了新的文献求助10
26秒前
27秒前
27秒前
27秒前
28秒前
28秒前
28秒前
29秒前
29秒前
木子西完成签到,获得积分10
29秒前
upup小李完成签到,获得积分10
29秒前
30秒前
思源应助科研通管家采纳,获得10
30秒前
30秒前
小二郎应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Changing towards human-centred technology 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4248080
求助须知:如何正确求助?哪些是违规求助? 3781205
关于积分的说明 11871436
捐赠科研通 3434064
什么是DOI,文献DOI怎么找? 1884767
邀请新用户注册赠送积分活动 936342
科研通“疑难数据库(出版商)”最低求助积分说明 842268