Prediction of Severe Acute Pancreatitis at a Very Early Stage of the Disease Using Artificial Intelligence Techniques, Without Laboratory Data or Imaging Tests

医学 急性胰腺炎 阶段(地层学) 阿帕奇II 重症监护室 生命体征 前瞻性队列研究 接收机工作特性 胰腺炎 疾病 死亡率 急诊医学 重症监护医学 机器学习 内科学 外科 古生物学 计算机科学 生物
作者
Sara Villasante,Nair Fernandes,Marc Perez,Miguel Ángel Cordobés,Gemma Piella,María Martínez-Martínez,Concepción Gómez‐Gavara,L. Blanco,Piero Alberti,R. Charco,Elizabeth Pando
出处
期刊:Annals of Surgery [Lippincott Williams & Wilkins]
被引量:1
标识
DOI:10.1097/sla.0000000000006579
摘要

Objective: To evaluate machine learning models’ performance in predicting acute pancreatitis severity using early-stage variables while excluding laboratory and imaging tests. Summary Background Data: Severe acute pancreatitis (SAP) affects approximately 20% of acute pancreatitis (AP) patients and is associated with high mortality rates. Accurate early prediction of SAP and in-hospital mortality is crucial for effective management. Traditional scores such as APACHE-II and BISAP are complex and require laboratory tests, while early predictive models are lacking. Machine learning (ML) has shown promising results in predictive modelling, potentially outperforming traditional methods. Methods: We analysed data from a prospective database of AP patients admitted to Vall d’Hebron Hospital from November 2015 to January 2022. Inclusion criteria were adults diagnosed with AP according to the 2012 Atlanta classification. Data included basal characteristics, current medication, and vital signs. We developed machine learning models to predict SAP, in-hospital mortality, and intensive care unit (ICU) admission. The modelling process included two stages: Stage 0 , which used basal characteristics and medication, and Stage 1 , which included data from Stage 0 and vital signs. Results: Out of 634 cases, 594 were analysed. The Stage 0 model showed AUC values of 0.698 for mortality, 0.721 for ICU admission, and 0.707 for persistent organ failure. The Stage 1 model improved performance with AUC values of 0.849 for mortality, 0.786 for ICU admission, and 0.783 for persistent organ failure. The models demonstrated comparable or superior performance to APACHE-II and BISAP scores. Conclusions: The ML models showed good predictive capacity for SAP, ICU admission, and mortality using early-stage data without laboratory or imaging tests. This approach could revolutionise AP patients’ initial triage and management, providing a personalised prediction method based on early clinical data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Lee采纳,获得10
1秒前
乌拉拉应助vivia采纳,获得10
2秒前
2秒前
wenwenwen666完成签到,获得积分20
4秒前
进退须臾完成签到,获得积分10
4秒前
4秒前
8秒前
充电宝应助xxxx采纳,获得10
8秒前
星辰大海应助激动的严青采纳,获得10
8秒前
GEeZiii完成签到,获得积分10
9秒前
spaghetti发布了新的文献求助10
9秒前
10秒前
11秒前
核桃发布了新的文献求助30
11秒前
着急的千山完成签到 ,获得积分10
11秒前
思源应助Tianyi_G采纳,获得10
12秒前
渔婆完成签到,获得积分10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
SciGPT应助科研通管家采纳,获得30
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
13秒前
Jasper应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
所所应助科研通管家采纳,获得10
13秒前
我是老大应助科研通管家采纳,获得10
14秒前
大个应助科研通管家采纳,获得10
14秒前
14秒前
大个应助科研通管家采纳,获得10
14秒前
大模型应助科研通管家采纳,获得10
14秒前
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
赘婿应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
李爱国应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得10
14秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846452
求助须知:如何正确求助?哪些是违规求助? 3388937
关于积分的说明 10555074
捐赠科研通 3109328
什么是DOI,文献DOI怎么找? 1713694
邀请新用户注册赠送积分活动 824842
科研通“疑难数据库(出版商)”最低求助积分说明 775068