Prediction of Lymph Node Metastasis in Colorectal Cancer using Intraoperative Fluorescence Multi-modal Imaging

结直肠癌 淋巴结转移 医学 情态动词 转移 淋巴结 放射科 癌症 病理 内科学 材料科学 高分子化学
作者
X. C. Zhu,He Sun,Yuhan Wang,Gang Hu,Lufang Shao,Song Zhang,Fucheng Liu,Chongwei Chi,Kunshan He,Jianqiang Tang,Yu An,Jie Tian,Zhenyu Liu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3510836
摘要

The diagnosis of lymph node metastasis (LNM) is essential for colorectal cancer (CRC) treatment. The primary method of identifying LNM is to perform frozen sections and pathologic analysis, but this method is labor-intensive and time-consuming. Therefore, combining intraoperative fluorescence imaging with deep learning (DL) methods can improve efficiency. The majority of recent studies only analyze uni-modal fluorescence imaging, which provides less semantic information. In this work, we mainly established a multi-modal fluorescence imaging feature fusion prediction (MFI-FFP) model combining white light, fluorescence, and pseudo-color imaging of lymph nodes for LNM prediction. Firstly, based on the properties of various modal imaging, distinct feature extraction networks are chosen for feature extraction, which could significantly enhance the complementarity of various modal information. Secondly, the multi-modal feature fusion (MFF) module, which combines global and local information, is designed to fuse the extracted features. Furthermore, a novel loss function is formulated to tackle the issue of imbalanced samples, challenges in differentiating samples, and enhancing sample variety. Lastly, the experiments show that the model has a higher area under the receiver operating characteristic (ROC) curve (AUC), accuracy (ACC), and F1 score than the uni-modal and bi-modal models and has a better performance compared to other efficient image classification networks. Our study demonstrates that the MFI-FFP model has the potential to help doctors predict LNM and shows its promise in medical image analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
半颗糖完成签到 ,获得积分10
2秒前
隐形曼青应助风中的元灵采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得30
3秒前
所所应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
燕子应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
深情安青应助wlei采纳,获得10
5秒前
Sam完成签到,获得积分10
6秒前
9秒前
10秒前
11秒前
科研通AI5应助汤冷霜采纳,获得10
11秒前
Yiyi完成签到,获得积分20
12秒前
玄妙发布了新的文献求助30
14秒前
yuaner发布了新的文献求助10
16秒前
情怀应助melody采纳,获得10
16秒前
19秒前
1111应助优雅小霜采纳,获得10
19秒前
wonder123完成签到,获得积分10
19秒前
20秒前
Lucas应助玄妙采纳,获得10
20秒前
zhouzhaoyi完成签到,获得积分10
22秒前
汤冷霜发布了新的文献求助10
23秒前
FOODHUA完成签到,获得积分10
25秒前
26秒前
叁拾肆完成签到,获得积分10
29秒前
晨曦完成签到,获得积分10
31秒前
31秒前
31秒前
34秒前
melody发布了新的文献求助10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777429
求助须知:如何正确求助?哪些是违规求助? 3322775
关于积分的说明 10211653
捐赠科研通 3038155
什么是DOI,文献DOI怎么找? 1667159
邀请新用户注册赠送积分活动 797971
科研通“疑难数据库(出版商)”最低求助积分说明 758103