HSIAO framework in feature selection for hyperspectral remote sensing images based on Jeffries-Matusita distance

高光谱成像 特征选择 遥感 计算机科学 特征(语言学) 人工智能 模式识别(心理学) 特征提取 选择(遗传算法) 地质学 语言学 哲学
作者
Huiying Li,Ailiang Qi,Huiling Chen,Shengbo Chen,Dong Zhao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tgrs.2025.3527138
摘要

Hyperspectral remote sensing image feature selection enhances the efficiency of further applications by extracting band information. However, it is challenging to optimize and extract the spectral relationship information of the entire hyperspectral image using traditional methods and solidified spectral representation strategies. As a result, band selection often leads to locally optimal candidate solutions. For instance, when applied to downstream classification tasks, the selected bands typically exhibit issues such as poor information separability, high spectral correlation, and missing information. This paper proposes a new HSIAO_BS framework based on Jeffries-Matusita distance (JM) and an evolutionary algorithm to obtain an excellent subset of bands for hyperspectral remote sensing image feature selection addressing downstream classification tasks. The research problem is modeled as a solution space with effective inter-spectral relationship representation. The HSIAO_BS framework designs an adaptive band encoding mechanism and a feature relationship representation based on JM distance to construct this space. Additionally, the key optimized search method in HSIAO_BS is the improved HSIAO. This evolutionary algorithm combines differential crossover and attenuating mutation strategies to enhance the balance between global exploration and local exploitation capabilities, while also targeting to improve the preference for band selection. The reliability, validity, and stability of the HSIAO_BS framework are verified through a series of performance test experiments conducted on three hyperspectral remote sensing image datasets to support downstream classification tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
于舒婷发布了新的文献求助50
刚刚
fan发布了新的文献求助10
1秒前
一坨完成签到 ,获得积分10
4秒前
海绵宝宝完成签到,获得积分10
6秒前
Rain_Ng完成签到,获得积分10
7秒前
8秒前
8秒前
stop here完成签到,获得积分10
11秒前
长青发布了新的文献求助10
11秒前
yyy发布了新的文献求助10
12秒前
13秒前
依文发布了新的文献求助10
13秒前
一只猫发布了新的文献求助10
17秒前
19秒前
YMM完成签到,获得积分10
21秒前
23秒前
Ava应助研友_ZeoKYL采纳,获得10
24秒前
长青完成签到,获得积分10
25秒前
Allen完成签到,获得积分10
27秒前
27秒前
28秒前
支半雪发布了新的文献求助10
29秒前
李爱国应助GAS采纳,获得10
30秒前
31秒前
黎笙发布了新的文献求助10
32秒前
月亮发布了新的文献求助10
33秒前
33秒前
bian完成签到 ,获得积分10
35秒前
香蕉觅云应助科研圣体采纳,获得10
35秒前
支半雪完成签到,获得积分10
35秒前
咕噜噜发布了新的文献求助10
35秒前
天玄一刀发布了新的文献求助10
36秒前
852应助真德秀先生采纳,获得10
38秒前
Akim应助余潇潇采纳,获得10
38秒前
39秒前
幸福妙柏发布了新的文献求助10
39秒前
40秒前
啸天狼狗给啸天狼狗的求助进行了留言
40秒前
黎笙完成签到,获得积分20
41秒前
月亮完成签到,获得积分10
43秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3942702
求助须知:如何正确求助?哪些是违规求助? 3487860
关于积分的说明 11045758
捐赠科研通 3218409
什么是DOI,文献DOI怎么找? 1778885
邀请新用户注册赠送积分活动 864448
科研通“疑难数据库(出版商)”最低求助积分说明 799504