Surface integrity and fatigue properties of Ti–6Al–4V alloy under the ultrasonic surface rolling process excited strain rate effect

材料科学 合金 冶金 超声波传感器 应变率 拉伤 曲面(拓扑) 复合材料 声学 几何学 数学 医学 物理 内科学
作者
Xuming Zha,Hao Qin,Yuan Zhi,Linqing Xi,Xiao Chen,Yi Li,Qingshan Jiang,Zhilong Xu,Feng Jiang
出处
期刊:Journal of materials research and technology [Elsevier]
卷期号:35: 416-434 被引量:14
标识
DOI:10.1016/j.jmrt.2025.01.024
摘要

Ultrasonic surface rolling process is a novel surface enhancement technique that significantly influences the surface integrity and fatigue performance of titanium alloys. In this study, the ultrasonic impact strengthening mechanism was researched by single-point ultrasonic impact strengthening experiment and verified in ultrasonic surface rolling process under actual working conditions. The effects of different ultrasonic impact amplitudes on the deformation strain rate, surface morphology, microstructure, hardness field and residual compressive stress field of Ti–6Al–4V workpieces after USRP were investigated. In the process of single point ultrasonic impact, the impact kinetic energy applied to the workpiece surface is positively correlated with the ultrasonic amplitude, and this could lead to a high strain rate plastic deformation of the material surface. After USRP treatment, the hardness distribution of the workpiece in the depth direction shows a trend of first increasing and then decreasing until it reaches the hardness level of the substrate. Compared with the deeper layer deformed region, the number of low-angle grain boundaries (LAGB) was larger at the surface layer of workpiece, which indicates that the degree of grain refinement is significantly improved. The fatigue failure mechanisms and the characteristics of fatigue crack initiation and propagation were studied. Under the condition of ultrasonic amplitude of 4 μm, the fatigue life of Ti–6Al–4V workpiece after USRP could reach about 7,529,116 cycles. This study could provide effective guidance for the mechanisms of ultrasonic impact strengthening and the selection of appropriate ultrasonic impact parameters for titanium alloy workpiece.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
寻道图强应助Sean采纳,获得50
刚刚
任侠传完成签到,获得积分10
1秒前
高瑞航完成签到,获得积分10
3秒前
有趣的桃应助咖喱采纳,获得10
3秒前
3秒前
3秒前
4秒前
橘子姐姐发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
自然醒发布了新的文献求助10
5秒前
李爱国应助zmy采纳,获得30
6秒前
7秒前
7秒前
万能图书馆应助666采纳,获得10
8秒前
miumiu2024完成签到,获得积分10
8秒前
Dreamable发布了新的文献求助10
9秒前
康康发布了新的文献求助10
9秒前
年轻小之发布了新的文献求助10
9秒前
LiOK完成签到 ,获得积分10
9秒前
美好凡阳发布了新的文献求助10
9秒前
10秒前
10秒前
李健的小迷弟应助xiaoyao采纳,获得10
11秒前
君莫笑发布了新的文献求助10
12秒前
青衫完成签到 ,获得积分10
12秒前
酷波er应助Sean采纳,获得50
13秒前
SciGPT应助zmy采纳,获得10
15秒前
美好斓发布了新的文献求助10
15秒前
SciGPT应助甜北枳采纳,获得10
15秒前
16秒前
seele发布了新的文献求助10
17秒前
Rocky完成签到 ,获得积分10
17秒前
周乘风应助啧啧啧采纳,获得10
18秒前
李健的小迷弟应助yjf采纳,获得10
18秒前
量子星尘发布了新的文献求助10
19秒前
幸运鹅应助xiaowannamoney采纳,获得10
20秒前
20秒前
小可爱完成签到 ,获得积分10
20秒前
whatever应助康康采纳,获得20
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492848
求助须知:如何正确求助?哪些是违规求助? 4590743
关于积分的说明 14432175
捐赠科研通 4523317
什么是DOI,文献DOI怎么找? 2478264
邀请新用户注册赠送积分活动 1463283
关于科研通互助平台的介绍 1436014