Manifold Learning and Deep Generative Networks for Heterogeneous Change Detection From Hyperspectral and Synthetic Aperture Radar Images

高光谱成像 合成孔径雷达 人工智能 计算机科学 雷达成像 生成语法 遥感 歧管(流体力学) 模式识别(心理学) 深度学习 计算机视觉 雷达 地质学 电信 工程类 机械工程
作者
Ignacio Masari,Gabriele Moser,Sebastiano B. Serpico
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:22: 1-5 被引量:2
标识
DOI:10.1109/lgrs.2024.3496567
摘要

Unsupervised change detection stands as a critical tool for damage assessment after a natural disaster. We emphasize heterogeneous change detection methods, which support the case of highly heterogeneous images at the two observation dates, providing greater flexibility than traditional homogeneous methods. This adaptability is vital for swift responses in the aftermath of natural disasters. In this framework, we address the challenging case of detecting changes between a hyperspectral and a synthetic aperture radar images. This case has intrinsic difficulties, namely the difference in the nature of the physical quantity measured, added to the great difference in dimensionality of the two imaging domains. To address these challenges, a novel method is proposed based on the integration of a manifold learning technique and deep learning networks trained to perform an image to image translation task. The method works in a fully unsupervised manner, further enforcing a fast implementation in real-world scenarios. From an application-oriented perspective, we focus on flooded-area mapping using the PRISMA and COSMO-SkyMed missions. The experimental validation on two datasets, a semi-simulated one and a real one associated with flooding, suggests that the proposed method allows for accurate detection of flooded areas and other ground changes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的粉丝团团长应助kkk采纳,获得10
刚刚
芝芝完成签到,获得积分10
1秒前
独特的凡儿完成签到,获得积分10
2秒前
未来发布了新的文献求助10
3秒前
倒逆之蝶应助科研通管家采纳,获得10
3秒前
倒逆之蝶应助科研通管家采纳,获得10
3秒前
3秒前
倒逆之蝶应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
4秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
传奇3应助专注若蕊采纳,获得10
4秒前
干净寻冬应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
无极微光应助科研通管家采纳,获得20
4秒前
华仔应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
yznfly应助科研通管家采纳,获得20
5秒前
无极微光应助科研通管家采纳,获得20
5秒前
5秒前
5秒前
5秒前
我爱学习发布了新的文献求助10
5秒前
7秒前
8秒前
8秒前
111完成签到 ,获得积分10
9秒前
犹豫的铸海完成签到,获得积分10
9秒前
a_xiuxiu完成签到,获得积分10
9秒前
华仔应助佘余采纳,获得10
10秒前
泡在冰里完成签到,获得积分10
11秒前
华仔应助fafafa采纳,获得30
11秒前
瘦瘦冰凡发布了新的文献求助10
11秒前
科研通AI6应助失眠的以蓝采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652973
求助须知:如何正确求助?哪些是违规求助? 4788997
关于积分的说明 15062459
捐赠科研通 4811632
什么是DOI,文献DOI怎么找? 2573955
邀请新用户注册赠送积分活动 1529728
关于科研通互助平台的介绍 1488403