Efficient and Effective Role Player: A Compact Knowledge-grounded Persona-based Dialogue Model Enhanced by LLM Distillation

人格 扎根理论 蒸馏 计算机科学 人机交互 知识管理 社会学 化学 定性研究 色谱法 社会科学
作者
Linmei Hu,Xinyu Zhang,Dandan Song,Changzhi Zhou,Hongyu He,Liqiang Nie
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
标识
DOI:10.1145/3711857
摘要

Incorporating explicit personas into dialogue models is critical for generating responses that fulfill specific user needs and preferences, creating a more personalized and engaging interaction. Early works on persona-based dialogue generation directly concatenate the persona descriptions and dialogue history into relatively small pre-trained language models (PLMs) for response generation, which leads to uninformative and inferior results due to the sparse persona information and the limited model generation capabilities. Recently, large language models (LLMs) have shown their surprising capabilities in language generation. Prompting the LLMs with the persona descriptions for role-playing dialogue generation has also achieved promising results. However, deploying LLMs is challenging for practical applications due to their large scale, spurring efforts to distill the generation capabilities into more concise and compact models through teacher-student learning. In this paper, we propose an efficient compact K nowledge-grounded P ersona-based D ialogue model enhanced by LLM D istillation (KPDD). Specifically, first, we propose to enrich the annotated persona descriptions by integrating external knowledge graphs (KGs) with a mixed encoding network, coupled with a mixture of experts (MoE) module for both informative and diverse response generation. The mixed encoding network contains multiple layers of modality interaction operations, enabling information from both modalities propagates to the other. Second, to fully exploit the generation capabilities of LLMs, we turn to the distillation technique to improve the generation capabilities of our model, facilitated by a natural language inference (NLI) based filtering mechanism to extract high-quality information from LLMs. In addition, we employ a curriculum learning strategy to train our model on the high-quality filtered distilled data and progressively on the relatively noisy original data, enhancing its adaptability and performance. Extensive experiments show that KPDD outperforms state-of-the-art baselines in terms of both automatic and human evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风趣小蜜蜂完成签到,获得积分10
1秒前
3秒前
午后两点最热完成签到 ,获得积分10
4秒前
ONION完成签到,获得积分10
5秒前
NexusExplorer应助白巧小丸子采纳,获得10
6秒前
打打应助白巧小丸子采纳,获得10
9秒前
淡定鱼发布了新的文献求助10
10秒前
灭霸完成签到,获得积分10
10秒前
KSAcc发布了新的文献求助10
12秒前
善学以致用应助Captain采纳,获得10
14秒前
14秒前
科研通AI2S应助wuxixi采纳,获得10
15秒前
传统的雨文完成签到,获得积分10
17秒前
今后应助白巧小丸子采纳,获得10
19秒前
清修完成签到,获得积分10
19秒前
赘婿应助乐1采纳,获得10
23秒前
852应助白巧小丸子采纳,获得10
25秒前
售后延长完成签到 ,获得积分10
25秒前
25秒前
27秒前
Rabbit发布了新的文献求助10
29秒前
锦瑷完成签到,获得积分10
30秒前
wzh完成签到 ,获得积分10
33秒前
33秒前
zhang完成签到,获得积分10
35秒前
35秒前
36秒前
小毛线发布了新的文献求助10
36秒前
Jasper应助研究僧采纳,获得10
36秒前
38秒前
YamDaamCaa给燕子的求助进行了留言
39秒前
39秒前
daisies应助KSAcc采纳,获得20
41秒前
SYLH应助科研通管家采纳,获得10
41秒前
情怀应助科研通管家采纳,获得10
41秒前
在水一方应助科研通管家采纳,获得10
41秒前
SYLH应助科研通管家采纳,获得10
41秒前
SYLH应助科研通管家采纳,获得10
41秒前
SYLH应助科研通管家采纳,获得10
41秒前
SYLH应助科研通管家采纳,获得10
41秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3964735
求助须知:如何正确求助?哪些是违规求助? 3510218
关于积分的说明 11152291
捐赠科研通 3244475
什么是DOI,文献DOI怎么找? 1792395
邀请新用户注册赠送积分活动 873801
科研通“疑难数据库(出版商)”最低求助积分说明 803987