Attention-enhanced multimodal feature fusion network for clothes-changing person re-identification

计算智能 鉴定(生物学) 服装 特征(语言学) 模式识别(心理学) 人工智能 计算机科学 历史 语言学 哲学 植物 考古 生物
作者
Yongkang Ding,Jiechen Li,Hao Wang,Ziang Liu,Anqi Wang
出处
期刊:Complex & Intelligent Systems 卷期号:11 (1) 被引量:5
标识
DOI:10.1007/s40747-024-01646-2
摘要

Clothes-Changing Person Re-Identification is a challenging problem in computer vision, primarily due to the appearance variations caused by clothing changes across different camera views. This poses significant challenges to traditional person re-identification techniques that rely on clothing features. These challenges include the inconsistency of clothing and the difficulty in learning reliable clothing-irrelevant local features. To address this issue, we propose a novel network architecture called the Attention-Enhanced Multimodal Feature Fusion Network (AE-Net). AE-Net effectively mitigates the impact of clothing changes on recognition accuracy by integrating RGB global features, grayscale image features, and clothing-irrelevant features obtained through semantic segmentation. Specifically, global features capture the overall appearance of the person; grayscale image features help eliminate the interference of color in recognition; and clothing-irrelevant features derived from semantic segmentation enforce the model to learn features independent of the person's clothing. Additionally, we introduce a multi-scale fusion attention mechanism that further enhances the model's ability to capture both detailed and global structures, thereby improving recognition accuracy and robustness. Extensive experimental results demonstrate that AE-Net outperforms several state-of-the-art methods on the PRCC and LTCC datasets, particularly in scenarios with significant clothing changes. On the PRCC and LTCC datasets, AE-Net achieves Top-1 accuracy rates of 60.4% and 42.9%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助sunzhuxi采纳,获得10
1秒前
平常瑛关注了科研通微信公众号
3秒前
aobadong完成签到,获得积分10
3秒前
chenll1988完成签到 ,获得积分10
4秒前
xx完成签到,获得积分10
4秒前
荒野男发布了新的文献求助10
5秒前
嘿嘿应助楼满风采纳,获得10
5秒前
尉迟晓筠发布了新的文献求助20
6秒前
9秒前
10秒前
12秒前
passion完成签到,获得积分10
12秒前
13秒前
Owen应助科研通管家采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
13秒前
在水一方应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
healthy完成签到 ,获得积分10
14秒前
14秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
14秒前
15秒前
君溪夜完成签到,获得积分10
15秒前
Charm8r发布了新的文献求助10
15秒前
zy发布了新的文献求助10
16秒前
cc完成签到,获得积分10
17秒前
踩点行动完成签到,获得积分10
17秒前
草履虫发布了新的文献求助10
18秒前
在水一方应助小银采纳,获得10
18秒前
汉堡包应助RENAISSANCE111采纳,获得10
21秒前
21秒前
充电宝应助Charm8r采纳,获得10
21秒前
尉迟晓筠完成签到,获得积分20
21秒前
21秒前
Cholera完成签到,获得积分10
22秒前
李昕123发布了新的文献求助10
25秒前
25秒前
所所应助2049510053采纳,获得10
26秒前
27秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818711
求助须知:如何正确求助?哪些是违规求助? 3361803
关于积分的说明 10414228
捐赠科研通 3080117
什么是DOI,文献DOI怎么找? 1693738
邀请新用户注册赠送积分活动 814554
科研通“疑难数据库(出版商)”最低求助积分说明 768313