低强度脉冲超声
软骨内骨化
脚手架
生物医学工程
膜内骨化
去细胞化
材料科学
再生(生物学)
骨愈合
化学
细胞生物学
治疗性超声
软骨
超声波
解剖
医学
生物
放射科
作者
Wanru Jia,Tianlong Wang,Feng Chen,Zhiqing Liu,Xiaodong Hou,Wentao Cao,Xinyu Zhao,Bing‐Qiang Lu,Yan Hu,Yijie Dong,Jianqiao Zhou,Zifei Zhou,Weiwei Zhan
出处
期刊:ACS Nano
[American Chemical Society]
日期:2025-01-21
卷期号:19 (4): 4422-4439
标识
DOI:10.1021/acsnano.4c13357
摘要
Multiple physical stimuli are expected to produce a synergistic effect to promote bone tissue regeneration. Low-intensity pulsed ultrasound (LIPUS) has been clinically used in bone repair for the mechanical stimulation that it provides. In addition, LIPUS can also excite the biomaterials to generate other physical stimuli such as thermal or electrical stimuli. In this study, a scaffold based on decellularized adipose tissue (DAT) is established by incorporating polydopamine-modified multilayer black phosphorus nanosheets (pDA-mBP@DAT). Their effect on bone repair under LIPUS stimulation and the potential mechanisms are further investigated. This scaffold possesses piezoelectric properties and generates a mild thermogenic stimulus when stimulated by LIPUS. With superior properties, this scaffold is demonstrated to have good cytocompatibility in vitro and in vivo. Simultaneously, LIPUS promotes cell attachment, migration, and osteogenic differentiation in the pDA-mBP@DAT scaffold. Furthermore, the combined use of pDA-mBP@DAT and LIPUS significantly affects the regenerative effect in rat models of critical-sized calvarial defects. The possible mechanisms include promoting osteogenesis and neovascularization and activating the Piezo1. This study presents insight into speeding up bone regeneration by the synergistic combination of LIPUS and pDA-mBP@DAT scaffolds.
科研通智能强力驱动
Strongly Powered by AbleSci AI