解耦(概率)
材料科学
电解质
金属锂
有机自由基电池
聚合物
金属
离子
锂(药物)
电池(电)
配体(生物化学)
化学工程
聚合物电解质
无机化学
纳米技术
电极
离子电导率
有机化学
热力学
物理化学
复合材料
化学
冶金
内分泌学
控制工程
工程类
物理
受体
医学
生物化学
功率(物理)
作者
Ruifan Lin,Yingmin Jin,Yumeng Li,Mengyu Fu,Yuxin Gong,Lei Lei,Yong Zhang,Feng Xu,Yueping Xiong
标识
DOI:10.1002/adfm.202421880
摘要
Abstract Achieving fast ion transport kinetics and high interfacial stability simultaneously is challenging for polymer electrolytes in solid‐state lithium batteries, as the coordination environment optimal for Li + conduction struggles to generate desirable interphase chemistry. Herein, the adjustable property of organic ligands is exploited in metal–organic frameworks (MOFs) to develop a hierarchical composite electrolyte, incorporating heterogeneous and spatially confined MOF nanofillers into a poly‐1,3‐dioxolane matrix. The defect‐engineered University of Oslo‐66 MOFs (UiO‐66d) with tailored Lewis acidity can separate ion pairs and optimize Li + migration through weakened solvation effects, thereby enhancing ion conductivity by over sixfold (0.85 mS cm −1 @25 °C). At the lithium anode side, a densified University of Oslo‐67 MOFs (UiO‐67) layer with conjugated π electrons facilitates anion participation in the solvation sheath, promoting anion reduction and thereby forming LiF/Li 3 N‐dominated solid electrolyte interphase for isotropic Li deposition. The as‐assembled Li||LiFePO 4 full cell delivers superior cycling stability with 92.7% of capacity retained over 2000 cycles at 2 C. Notably, the developed electrolyte demonstrates excellent compatibility with high‐voltage cathodes, achieving 80% capacity retention with LiNi 0.5 Co 0.2 Mn 0.3 O 2 over 630 cycles. This work provides valuable insights into decoupling transport and interfacial challenges in solid‐state lithium batteries, paving the way for advanced battery technologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI