Modelling and Optimizing the Integrity of an Automated Vegetable Leaf Packaging Machine

结构完整性 计算机科学 工程类 结构工程
作者
Oluwole Timothy Ojo,Sesan Peter Ayodeji,Nurudeen A. Azeez
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:47 (11)
标识
DOI:10.1111/jfpe.14775
摘要

ABSTRACT This study emphasized the need for postharvest technology in Nigeria's vegetable production to reduce postharvest losses ranging from 5% to 50%, focusing on enhancing processes of automated packaging unit of vegetable processing plant through the use of artificial neural networks (ANN). The experiment was conducted on a vegetable leaf processing plant with the objective of improving the reliability and performance of the automated packaging unit. Operating parameters such as moisture contents, leave particle size, time taken, throughput capacity, and specific mechanical energy consumption were varied to determine the optimum condition for each parameter. Statistical analysis was performed using R software. The appropriate model was chosen based on selection of the highest coefficient of prediction where the additional terms are significant and the model was not aliased, insignificant lack of fit and the maximization of the “Adjusted R 2 value” and the “Predicted R 2 value.” An optimum packaging condition was obtained at 15% moisture content, and 104.4 particle sizes which gave an optimum packaging time of 0.02 h, optimum packaging capacity of 57.31 kg/h, optimum SMEC value of 0.008 kw/h/kg, optimum repeatability value of 0.128 kg, optimum linearity value of 4.713 cm, optimum accuracy value of 5.2 cm (±0.45). The performance of the ANN model was evaluated using various measures such as mean squared error (MSE), the coefficient of determination ( R 2 ), mean absolute error (MAE), and the adjusted R ‐squared (Adj. R 2 ) for packaging machine. The results of this study suggest that ANN can be used to effectively optimize packaging units of the vegetable leaf processing plant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
龙傲天发布了新的文献求助10
3秒前
3秒前
aaainon完成签到 ,获得积分10
3秒前
猪猪hero发布了新的文献求助10
4秒前
整齐小猫咪完成签到,获得积分10
4秒前
4秒前
manan发布了新的文献求助10
5秒前
5秒前
沐沐发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
7秒前
7秒前
小二郎应助Aurora采纳,获得10
8秒前
9秒前
大鱼完成签到,获得积分10
9秒前
Xiaohua发布了新的文献求助10
9秒前
张光光发布了新的文献求助10
9秒前
9秒前
科研通AI5应助Ada采纳,获得30
9秒前
碧蓝成危完成签到,获得积分10
10秒前
QF发布了新的文献求助10
10秒前
11秒前
Cherish应助聪明无敌小腚宝采纳,获得10
12秒前
Dandraine发布了新的文献求助10
12秒前
12秒前
LDDD发布了新的文献求助10
13秒前
Lucas应助啊噢采纳,获得10
13秒前
猪猪hero发布了新的文献求助10
13秒前
星辰大海应助N2H4采纳,获得30
13秒前
达利发布了新的文献求助20
14秒前
14秒前
danna发布了新的文献求助10
15秒前
15秒前
15秒前
情怀应助running采纳,获得30
16秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842381
求助须知:如何正确求助?哪些是违规求助? 3384462
关于积分的说明 10535313
捐赠科研通 3104995
什么是DOI,文献DOI怎么找? 1709939
邀请新用户注册赠送积分活动 823416
科研通“疑难数据库(出版商)”最低求助积分说明 774059