平滑的
风格(视觉艺术)
计算机科学
算法
传输(计算)
人工智能
计算机视觉
艺术
视觉艺术
并行计算
作者
Xian‐Fang Li,Han Cao,Zhaoyang Zhang,Jiacheng Hu,Yuhui Jin,Zihao Zhao
出处
期刊:Cornell University - arXiv
日期:2024-11-13
被引量:5
标识
DOI:10.48550/arxiv.2411.08014
摘要
The works of Gatys et al. demonstrated the capability of Convolutional Neural Networks (CNNs) in creating artistic style images. This process of transferring content images in different styles is called Neural Style Transfer (NST). In this paper, we re-implement image-based NST, fast NST, and arbitrary NST. We also explore to utilize ResNet with activation smoothing in NST. Extensive experimental results demonstrate that smoothing transformation can greatly improve the quality of stylization results.
科研通智能强力驱动
Strongly Powered by AbleSci AI