N-BEATS deep learning method for landslide deformation monitoring and prediction based on InSAR: a case study of Xinpu landslide

山崩 干涉合成孔径雷达 地质学 遥感 变形(气象学) 地震学 大地测量学 合成孔径雷达 海洋学
作者
Aoqing Guo,Hu Jun,Wanji Zheng,GUI Rong,DU Zhigui,ZHU Wu,HE Lehe
出处
期刊:DOAJ: Directory of Open Access Journals - DOAJ 被引量:9
标识
DOI:10.11947/j.agcs.2022.20220298
摘要

Landslides usually occur suddenly and cause great damage, often causing serious life safety accidents and property losses. The monitoring and prediction methods of landslide deformation with high reliability, high precision and anti-difference performance are of practical significance to the needs of national disaster prevention and mitigation. Interferometric synthetic aperture radar(InSAR) technology is a monitoring method capable of all-day and all-weather observation, obtaining images with high spatial resolution and wide coverage, and capturing dynamic changes of spatio-temporal dimensions with high sensitivity. However, at present, the landslide prediction based on InSAR time series image is very rare. This paper presents a landslide prediction method based on deep learning, which can effectively solve the problem of medium- and short-term landslide prediction by exploiting multi-temporal InSAR observations. Neural basis expansion analysis (N-BEATS) network model was used to predict the landslide in the Xinpu area, the Three Gorges. The landslide prediction was completed with an accuracy (root mean square error) of 1.1 mm. The results are analyzed by the regularity of data structure, comparison to traditional methods, evaluation of the tolerance and estimation of the confidence interval. The results show that the proposed prediction method has outstanding advantages of high precision, high reliability and certain robust estimation ability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Pioneer完成签到 ,获得积分10
刚刚
orixero应助科研工作者采纳,获得10
刚刚
jin发布了新的文献求助10
1秒前
1秒前
唐很甜完成签到 ,获得积分10
1秒前
江书怡发布了新的文献求助10
1秒前
顺利珂完成签到 ,获得积分10
2秒前
羽安完成签到,获得积分10
2秒前
花开富贵完成签到,获得积分10
2秒前
2秒前
2秒前
haby完成签到,获得积分10
3秒前
研友_VZG7GZ应助liu采纳,获得10
3秒前
sia完成签到,获得积分10
3秒前
沉静立辉完成签到,获得积分10
3秒前
3秒前
kk完成签到 ,获得积分10
4秒前
武坤发布了新的文献求助10
4秒前
gh完成签到,获得积分10
4秒前
研友_8op0RL完成签到,获得积分10
4秒前
123321发布了新的文献求助20
5秒前
6秒前
科研通AI2S应助重要的黑夜采纳,获得10
6秒前
Wududu完成签到,获得积分10
7秒前
Jacky关注了科研通微信公众号
7秒前
22完成签到,获得积分10
7秒前
7秒前
8秒前
psj完成签到,获得积分10
8秒前
hu发布了新的文献求助10
8秒前
8秒前
小泉完成签到,获得积分10
8秒前
小罗萝卜完成签到,获得积分10
8秒前
陈早早完成签到,获得积分10
9秒前
昏睡的咖啡完成签到,获得积分10
9秒前
9秒前
曦谷应助田帅采纳,获得50
9秒前
hy发布了新的文献求助10
10秒前
11秒前
万能图书馆应助Misaki采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402507
求助须知:如何正确求助?哪些是违规求助? 4521132
关于积分的说明 14084150
捐赠科研通 4435162
什么是DOI,文献DOI怎么找? 2434563
邀请新用户注册赠送积分活动 1426697
关于科研通互助平台的介绍 1405496