亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Tree-based heterogeneous cascade ensemble model for credit scoring

可解释性 计算机科学 可扩展性 机器学习 同种类的 人工智能 决策树 比例(比率) 数据挖掘 集成学习 基础(拓扑) 数据库 数学 量子力学 组合数学 物理 数学分析
作者
Wan’an Liu,Hong Fan,Meng Xia
出处
期刊:International Journal of Forecasting [Elsevier BV]
卷期号:39 (4): 1593-1614 被引量:1
标识
DOI:10.1016/j.ijforecast.2022.07.007
摘要

Credit scoring is an important tool to guard against commercial risks for banks and lending companies and provides good conditions for the construction of individual personal credit. Ensemble algorithms have shown appealing progress for the improvement of credit scoring. In this study, to meet the challenge of large-scale credit scoring, we propose a heterogeneous deep forest model (Heter-DF), which is established based on considerations ranging from base learner selection, encouragement of the diversity of base learners, and ensemble strategies, for credit scoring. Heter-DF is designed as a scalable cascading framework that can increase its complexity with the scale of the credit dataset. Moreover, each level of Heter-DF is built by multiple heterogeneous tree-based ensembled base learners, avoiding the homogeneous prediction of the ensemble framework. In addition, a weighted voting mechanism is introduced to highlight important information and suppress irrelevant features, making Heter-DF a robust model for credit scoring. Experimental results on four credit scoring datasets and six evaluation metrics show that the cascading framework a good choice for the ensemble of tree-based base learners. A comparison among homogeneous ensembles and heterogeneous ensembles further demonstrates the effectiveness of Heter-DF. Experiments on different training sets indicate that Heter-DF is a scalable framework which not only deals with large-scale credit scoring but also satisfies the condition where small-scale credit scoring is desirable. Finally, based on the good interpretability of a tree-based structure, the global interpretation of Heter-DF is preliminarily explored.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柴子完成签到 ,获得积分10
5秒前
orixero应助Chloe采纳,获得10
12秒前
Panther完成签到,获得积分10
18秒前
NS发布了新的文献求助10
20秒前
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
1分钟前
Chloe发布了新的文献求助10
1分钟前
1分钟前
Chloe完成签到,获得积分10
1分钟前
1分钟前
2分钟前
孤独君浩发布了新的文献求助10
2分钟前
CipherSage应助孤独君浩采纳,获得10
2分钟前
2分钟前
胡杉完成签到,获得积分10
3分钟前
共享精神应助科研通管家采纳,获得10
3分钟前
脑洞疼应助科研通管家采纳,获得10
3分钟前
3分钟前
scm应助科研通管家采纳,获得30
3分钟前
天天快乐应助胡杉采纳,获得10
3分钟前
ldjldj_2004完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
Nan发布了新的文献求助10
3分钟前
科目三应助Dr_an采纳,获得20
3分钟前
3分钟前
poolgreen发布了新的文献求助10
3分钟前
躺赢完成签到 ,获得积分10
3分钟前
3分钟前
Dr_an发布了新的文献求助20
3分钟前
宅宅完成签到 ,获得积分10
4分钟前
大宝发布了新的文献求助10
4分钟前
4分钟前
Dr_an完成签到,获得积分10
5分钟前
zhaoty完成签到,获得积分10
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
烟花应助科研通管家采纳,获得10
5分钟前
scm应助科研通管家采纳,获得30
5分钟前
Zy完成签到,获得积分10
5分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827283
求助须知:如何正确求助?哪些是违规求助? 3369624
关于积分的说明 10456586
捐赠科研通 3089268
什么是DOI,文献DOI怎么找? 1699822
邀请新用户注册赠送积分活动 817501
科研通“疑难数据库(出版商)”最低求助积分说明 770251