Learning-based landmark detection in pelvis x-rays with attention mechanism: data from the osteoarthritis initiative

地标 骨关节炎 计算机科学 人工智能 机制(生物学) 骨盆 医学 地图学 解剖 地理 病理 物理 替代医学 量子力学
作者
Yun Pei,Lin Mu,Chuanxin Xu,Qiang Li,Gan Sen,Bin Sun,Xiuying Li,Xueyan Li
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:9 (2): 025001-025001 被引量:9
标识
DOI:10.1088/2057-1976/ac8ffa
摘要

Patients with developmental dysplasia of the hip can have this problem throughout their lifetime. The problem is difficult to detect by radiologists throughout x-ray because of an abrasion of anatomical structures. Thus, the landmarks should be automatically and precisely located. In this paper, we propose an attention mechanism of combining multi-dimension information on the basis of separating spatial dimension. The proposed attention mechanism decouples spatial dimension and forms width-channel dimension and height-channel dimension by 1D pooling operations in the height and width of spatial dimension. Then non-local means operations are performed to capture the correlation between long-range pixels in width-channel dimension, as well as that in height-channel dimension at different resolutions. The proposed attention mechanism modules are inserted into the skipped connections of U-Net to form a novel landmark detection structure. This landmark detection method was trained and evaluated through five-fold cross-validation on an open-source dataset, including 524 pelvis x-ray, each containing eight landmarks in pelvis, and achieved excellent performance compared to other landmark detection models. The average point-to-point errors of U-Net, HR-Net, CE-Net, and the proposed network were 3.5651 mm, 3.6118 mm, 3.3914 mm and 3.1350 mm, respectively. The results indicate that the proposed method has the highest detection accuracy. Furthermore, an open-source pelvis dataset is annotated and released for open research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小马甲应助如沐春风采纳,获得10
1秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
美好斓驳回了852应助
3秒前
3秒前
syn发布了新的文献求助10
4秒前
4秒前
echo完成签到,获得积分10
4秒前
完美世界应助xiaoyuan采纳,获得10
5秒前
miemie发布了新的文献求助10
5秒前
安好发布了新的文献求助10
6秒前
Galato发布了新的文献求助10
6秒前
7秒前
温大善人发布了新的文献求助10
7秒前
lq发布了新的文献求助10
8秒前
8秒前
9秒前
Zx_1993应助木子采纳,获得10
9秒前
echo发布了新的文献求助10
9秒前
10秒前
汉堡包应助曹志毅采纳,获得10
11秒前
传奇3应助眼睛大若南采纳,获得10
12秒前
SciGPT应助ZZzz采纳,获得10
12秒前
000发布了新的文献求助10
13秒前
13秒前
科研通AI6应助失眠的紫翠采纳,获得10
14秒前
山月发布了新的文献求助10
14秒前
吟賞烟霞完成签到,获得积分10
14秒前
机智绝悟完成签到,获得积分10
15秒前
行风发布了新的文献求助10
15秒前
haomozc完成签到,获得积分10
17秒前
liujiaqi完成签到,获得积分10
17秒前
机智绝悟发布了新的文献求助10
17秒前
Galato完成签到,获得积分10
18秒前
小杨九分甜完成签到,获得积分10
18秒前
xquinn发布了新的文献求助10
19秒前
安好完成签到,获得积分10
19秒前
19秒前
科目三应助清图采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073256
求助须知:如何正确求助?哪些是违规求助? 4293380
关于积分的说明 13378282
捐赠科研通 4114827
什么是DOI,文献DOI怎么找? 2253172
邀请新用户注册赠送积分活动 1257983
关于科研通互助平台的介绍 1190836