Radiomics and nomogram of magnetic resonance imaging for preoperative prediction of microvascular invasion in small hepatocellular carcinoma

列线图 磁共振成像 肝细胞癌 无线电技术 医学 逻辑回归 放射科 接收机工作特性 钆酸 肿瘤科 内科学 钆DTPA
作者
Yidi Chen,Ling Zhang,Zhipeng Zhou,Bin Lin,Zijian Jiang,Cheng Tang,Yi‐Wu Dang,Yuwei Xia,Bin Song,Liling Long
出处
期刊:World Journal of Gastroenterology [Baishideng Publishing Group]
卷期号:28 (31): 4399-4416 被引量:13
标识
DOI:10.3748/wjg.v28.i31.4399
摘要

Microvascular invasion (MVI) of small hepatocellular carcinoma (sHCC) (≤ 3.0 cm) is an independent prognostic factor for poor progression-free and overall survival. Radiomics can help extract imaging information associated with tumor pathophysiology.To develop and validate radiomics scores and a nomogram of gadolinium ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) for preoperative prediction of MVI in sHCC.In total, 415 patients were diagnosed with sHCC by postoperative pathology. A total of 221 patients were retrospectively included from our hospital. In addition, we recruited 94 and 100 participants as independent external validation sets from two other hospitals. Radiomics models of Gd-EOB-DTPA-enhanced MRI and diffusion-weighted imaging (DWI) were constructed and validated using machine learning. As presented in the radiomics nomogram, a prediction model was developed using multivariable logistic regression analysis, which included radiomics scores, radiologic features, and clinical features, such as the alpha-fetoprotein (AFP) level. The calibration, decision-making curve, and clinical usefulness of the radiomics nomogram were analyzed. The radiomic nomogram was validated using independent external cohort data. The areas under the receiver operating curve (AUC) were used to assess the predictive capability.Pathological examination confirmed MVI in 64 (28.9%), 22 (23.4%), and 16 (16.0%) of the 221, 94, and 100 patients, respectively. AFP, tumor size, non-smooth tumor margin, incomplete capsule, and peritumoral hypointensity in hepatobiliary phase (HBP) images had poor diagnostic value for MVI of sHCC. Quantitative radiomic features (1409) of MRI scans) were extracted. The classifier of logistic regression (LR) was the best machine learning method, and the radiomics scores of HBP and DWI had great diagnostic efficiency for the prediction of MVI in both the testing set (hospital A) and validation set (hospital B, C). The AUC of HBP was 0.979, 0.970, and 0.803, respectively, and the AUC of DWI was 0.971, 0.816, and 0.801 (P < 0.05), respectively. Good calibration and discrimination of the radiomics and clinical combined nomogram model were exhibited in the testing and two external validation cohorts (C-index of HBP and DWI were 0.971, 0.912, 0.808, and 0.970, 0.843, 0.869, respectively). The clinical usefulness of the nomogram was further confirmed using decision curve analysis.AFP and conventional Gd-EOB-DTPA-enhanced MRI features have poor diagnostic accuracies for MVI in patients with sHCC. Machine learning with an LR classifier yielded the best radiomics score for HBP and DWI. The radiomics nomogram developed as a noninvasive preoperative prediction method showed favorable predictive accuracy for evaluating MVI in sHCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助蟹蟹采纳,获得10
1秒前
科研通AI2S应助东东采纳,获得10
1秒前
希望天下0贩的0应助小凉采纳,获得10
1秒前
CC完成签到,获得积分10
1秒前
AZ完成签到,获得积分10
2秒前
科研岳完成签到,获得积分10
2秒前
独特画笔完成签到,获得积分10
2秒前
莫羽倾尘完成签到,获得积分10
3秒前
3秒前
Auston_zhong完成签到,获得积分0
3秒前
Flynn完成签到 ,获得积分10
4秒前
Young完成签到,获得积分10
4秒前
旷意完成签到,获得积分10
4秒前
鹿茸完成签到,获得积分10
4秒前
这课题真顺利完成签到,获得积分10
4秒前
小阿飞完成签到,获得积分10
5秒前
加油发布了新的文献求助10
5秒前
耳朵暴富富完成签到,获得积分10
6秒前
轩然发布了新的文献求助10
6秒前
科研通AI5应助喜看财经采纳,获得10
6秒前
wp发布了新的文献求助10
7秒前
zsj完成签到,获得积分10
8秒前
隐形挑战者完成签到,获得积分20
8秒前
不安的晓灵完成签到 ,获得积分10
8秒前
淡定白易完成签到,获得积分10
8秒前
小石完成签到,获得积分10
9秒前
云中漫步完成签到,获得积分10
9秒前
Foura完成签到,获得积分10
9秒前
光亮的绮晴完成签到 ,获得积分10
9秒前
chinbaor完成签到,获得积分10
9秒前
ffgg12138完成签到,获得积分20
10秒前
支妙完成签到,获得积分10
10秒前
baolong完成签到,获得积分10
10秒前
shengdong完成签到,获得积分10
10秒前
Anjianfubai完成签到,获得积分10
11秒前
zhen完成签到,获得积分10
11秒前
sunwending完成签到,获得积分10
12秒前
加油完成签到,获得积分10
12秒前
慕青应助hao采纳,获得10
13秒前
铎幸福完成签到,获得积分10
13秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804332
求助须知:如何正确求助?哪些是违规求助? 3349165
关于积分的说明 10342042
捐赠科研通 3065235
什么是DOI,文献DOI怎么找? 1682994
邀请新用户注册赠送积分活动 808622
科研通“疑难数据库(出版商)”最低求助积分说明 764626