Toward a formalized account of attitudes: The Causal Attitude Network (CAN) model.

一致性(知识库) 态度 感觉 集合(抽象数据类型) 心理学 社会心理学 对象(语法) 因果结构 因果模型 关系(数据库) 信念结构 认知心理学 平衡(能力) 计算机科学 人工智能 数学 数据挖掘 神经科学 物理 程序设计语言 统计 量子力学
作者
Jonas Dalege,Denny Borsboom,Frenk van Harreveld,Helma van den Berg,Mark Conner,Han L. J. van der Maas
出处
期刊:Psychological Review [American Psychological Association]
卷期号:123 (1): 2-22 被引量:374
标识
DOI:10.1037/a0039802
摘要

This article introduces the Causal Attitude Network (CAN) model, which conceptualizes attitudes as networks consisting of evaluative reactions and interactions between these reactions. Relevant evaluative reactions include beliefs, feelings, and behaviors toward the attitude object. Interactions between these reactions arise through direct causal influences (e.g., the belief that snakes are dangerous causes fear of snakes) and mechanisms that support evaluative consistency between related contents of evaluative reactions (e.g., people tend to align their belief that snakes are useful with their belief that snakes help maintain ecological balance). In the CAN model, the structure of attitude networks conforms to a small-world structure: evaluative reactions that are similar to each other form tight clusters, which are connected by a sparser set of "shortcuts" between them. We argue that the CAN model provides a realistic formalized measurement model of attitudes and therefore fills a crucial gap in the attitude literature. Furthermore, the CAN model provides testable predictions for the structure of attitudes and how they develop, remain stable, and change over time. Attitude strength is conceptualized in terms of the connectivity of attitude networks and we show that this provides a parsimonious account of the differences between strong and weak attitudes. We discuss the CAN model in relation to possible extensions, implication for the assessment of attitudes, and possibilities for further study.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
duou发布了新的文献求助10
1秒前
Han完成签到,获得积分10
2秒前
2秒前
李木森完成签到 ,获得积分10
2秒前
CodeCraft应助油炸马铃薯棍采纳,获得10
2秒前
magic_sweets发布了新的文献求助30
2秒前
www发布了新的文献求助10
2秒前
3秒前
may发布了新的文献求助10
3秒前
3秒前
小宇完成签到 ,获得积分10
4秒前
4秒前
一秋一年完成签到,获得积分10
5秒前
啃猫爪发布了新的文献求助10
5秒前
gooooood发布了新的文献求助10
6秒前
CipherSage应助James采纳,获得10
6秒前
几千年完成签到,获得积分10
6秒前
大模型应助大白锰采纳,获得30
6秒前
6秒前
sophia完成签到 ,获得积分10
7秒前
7秒前
科研通AI6应助读书的时候采纳,获得10
7秒前
我爱看文献完成签到,获得积分10
7秒前
项南风完成签到,获得积分10
8秒前
标致翠安发布了新的文献求助20
8秒前
8秒前
miga完成签到,获得积分10
9秒前
安烁完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
FashionBoy应助低调的老鹰采纳,获得10
11秒前
Kelvin发布了新的文献求助10
11秒前
科研通AI2S应助future采纳,获得10
11秒前
爆米花应助serendipity采纳,获得10
12秒前
阳光的大树完成签到,获得积分10
13秒前
高知悍妇完成签到,获得积分10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719991
求助须知:如何正确求助?哪些是违规求助? 5258347
关于积分的说明 15290002
捐赠科研通 4869605
什么是DOI,文献DOI怎么找? 2614876
邀请新用户注册赠送积分活动 1564872
关于科研通互助平台的介绍 1522051