材料科学
薄脆饼
光电子学
同质结
光伏系统
晶体硅
薄膜
硅
太阳能电池
蚀刻(微加工)
吸收(声学)
能量转换效率
光学
纳米技术
图层(电子)
兴奋剂
复合材料
电气工程
工程类
物理
作者
Pantea Aurang,Raşit Turan,Hüsnü Emrah Ünalan
出处
期刊:Nanotechnology
[IOP Publishing]
日期:2017-09-12
卷期号:28 (40): 405205-405205
被引量:16
标识
DOI:10.1088/1361-6528/aa81b9
摘要
Reducing silicon (Si) wafer thickness in the photovoltaic industry has always been demanded for lowering the overall cost. Further benefits such as short collection lengths and improved open circuit voltages can also be achieved by Si thickness reduction. However, the problem with thin films is poor light absorption. One way to decrease optical losses in photovoltaic devices is to minimize the front side reflection. This approach can be applied to front contacted ultra-thin crystalline Si solar cells to increase the light absorption. In this work, homojunction solar cells were fabricated using ultra-thin and flexible single crystal Si wafers. A metal assisted chemical etching method was used for the nanowire (NW) texturization of ultra-thin Si wafers to compensate weak light absorption. A relative improvement of 56% in the reflectivity was observed for ultra-thin Si wafers with the thickness of 20 ± 0.2 μm upon NW texturization. NW length and top contact optimization resulted in a relative enhancement of 23% ± 5% in photovoltaic conversion efficiency.
科研通智能强力驱动
Strongly Powered by AbleSci AI