Folding Large Proteins by Ultra-Deep Learning

卡斯普 水准点(测量) 计算机科学 蛋白质结构预测 折叠(DSP实现) 深度学习 人工智能 蛋白质折叠 序列(生物学) 卷积神经网络 模板 计算生物学 算法 机器学习 蛋白质结构 化学 生物 工程类 电气工程 生物化学 程序设计语言 地理 大地测量学
作者
Jinbo Xu
标识
DOI:10.1145/3107411.3107456
摘要

Ab initio protein folding is one of the most challenging problems in computational biology. The popular fragment assembly method mainly can only fold some small proteins. Recently contact-assisted folding has made some progress, but it requires accurate contact prediction, which by existing methods can only be achieved on some proteins with a very large number (>500 or 1000) of sequence homologs. To deal with proteins without so many sequence homologs, we have developed a novel deep learning model for contact prediction by concatenating two deep residual neural networks (ResNet), which performed the best in 2015 computer vision challenges. The first ResNet conducts convolutional transformation of 1-dimensional features and the second conducts convolutional transformation of 2-dimensional information including output of the first one. Experimental results suggest that our deep learning method greatly outperforms existing contact prediction methods and doubles the accuracy of pure co-evolution methods on proteins without many sequence homologs. Our method is ranked 1st in terms of the total F1 score in the latest CASP competition (i.e., CASP12), although back then (May-July 2016) our method was not fully implemented. Our predicted contacts also lead to much more accurate contact-assisted folding. Blindly tested in the weekly benchmark CAMEO (which can be interpreted as fully-automated CASP) since October 2016, our fully-automated web server implementing this method successfully folded many large hard targets (up to 600 residues) without good templates and many sequence homologs. Our large-scale benchmark indicates that ab initio folding (based upon predicted contacts) now can correctly fold more than 2/3 of randomly-chosen proteins. We have also applied this method to membrane protein contact prediction, which produces very good results in terms of both contact prediction accuracy and folding. An important finding is that even trained by only non-membrane proteins, our deep model works very well on membrane protein contact prediction and folding. This is because our deep model learns to predict contacts by making use of contact occurrence patterns (which are shared between membrane and non-membrane proteins) instead of sequence similarity. This method can also be extended to protein-protein interaction prediction, protein complex prediction and protein docking. Our web server implementing this method is publicly available at http://raptorx.uchicago.edu/ContactMap/ . For technical and result details, please see our papers [1-2].

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiangliuer发布了新的文献求助10
刚刚
顾矜应助还没想好采纳,获得20
刚刚
Rachel8023完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
xiaoxiao发布了新的文献求助30
3秒前
Ivory完成签到,获得积分10
3秒前
3秒前
小心发布了新的文献求助10
4秒前
garden驳回了fzire3应助
5秒前
星辰大海应助survivaluu采纳,获得10
6秒前
明亮夜云发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
刘莲发布了新的文献求助10
8秒前
martin完成签到,获得积分10
8秒前
jusvo发布了新的文献求助10
8秒前
8秒前
qqa发布了新的文献求助10
8秒前
jiangliuer完成签到,获得积分20
8秒前
9秒前
擎天之柱完成签到,获得积分10
9秒前
青青发布了新的文献求助30
9秒前
笑点低紊完成签到,获得积分10
9秒前
9秒前
阿航发布了新的文献求助100
10秒前
10秒前
10秒前
夏咲咏完成签到,获得积分20
11秒前
毛毛完成签到,获得积分10
11秒前
所所应助lizhiqian2024采纳,获得10
11秒前
迷人墨镜发布了新的文献求助30
12秒前
赫山柳发布了新的文献求助10
12秒前
丘比特应助好了没了采纳,获得10
12秒前
乐乐应助程一采纳,获得10
13秒前
研友_LwlAgn发布了新的文献求助10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787003
求助须知:如何正确求助?哪些是违规求助? 3332619
关于积分的说明 10256691
捐赠科研通 3047851
什么是DOI,文献DOI怎么找? 1672796
邀请新用户注册赠送积分活动 801549
科研通“疑难数据库(出版商)”最低求助积分说明 760271