Differential evolution for filter feature selection based on information theory and feature ranking

相互信息 特征选择 冗余(工程) 模式识别(心理学) 特征(语言学) 滤波器(信号处理) 数据挖掘 计算机科学 人工智能 排名(信息检索) 数学 算法 计算机视觉 语言学 操作系统 哲学
作者
Emrah Hançer,Bing Xue,Jun Zhang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:140: 103-119 被引量:315
标识
DOI:10.1016/j.knosys.2017.10.028
摘要

Feature selection is an essential step in various tasks, where filter feature selection algorithms are increasingly attractive due to their simplicity and fast speed. A common filter is to use mutual information to estimate the relationships between each feature and the class labels (mutual relevancy), and between each pair of features (mutual redundancy). This strategy has gained popularity resulting a variety of criteria based on mutual information. Other well-known strategies are to order each feature based on the nearest neighbor distance as in ReliefF, and based on the between-class variance and the within-class variance as in Fisher Score. However, each strategy comes with its own advantages and disadvantages. This paper proposes a new filter criterion inspired by the concepts of mutual information, ReliefF and Fisher Score. Instead of using mutual redundancy, the proposed criterion tries to choose the highest ranked features determined by ReliefF and Fisher Score while providing the mutual relevance between features and the class labels. Based on the proposed criterion, two new differential evolution (DE) based filter approaches are developed. While the former uses the proposed criterion as a single objective problem in a weighted manner, the latter considers the proposed criterion in a multi-objective design. Moreover, a well known mutual information feature selection approach (MIFS) based on maximum-relevance and minimum-redundancy is also adopted in single-objective and multi-objective DE algorithms for feature selection. The results show that the proposed criterion outperforms MIFS in both single objective and multi-objective DE frameworks. The results also indicate that considering feature selection as a multi-objective problem can generally provide better performance in terms of the feature subset size and the classification accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lixiaofei发布了新的文献求助10
刚刚
zby发布了新的文献求助10
刚刚
1秒前
小香菜发布了新的文献求助10
1秒前
2秒前
ding应助谨慎乞采纳,获得10
3秒前
4秒前
4秒前
4秒前
zby完成签到,获得积分10
5秒前
5秒前
fff完成签到,获得积分10
6秒前
CipherSage应助孟yifan采纳,获得10
6秒前
天天快乐应助啊福采纳,获得10
7秒前
古德猫完成签到,获得积分20
8秒前
hh10ve完成签到,获得积分10
8秒前
8秒前
乐乐应助悲凉的半凡采纳,获得10
8秒前
8秒前
科研通AI5应助神经元采纳,获得10
9秒前
忧心的碧完成签到,获得积分20
9秒前
halo发布了新的文献求助10
9秒前
哇哈哈哈发布了新的文献求助10
10秒前
阿咚完成签到,获得积分0
10秒前
10秒前
布布爱吃炸鸡完成签到,获得积分10
11秒前
11秒前
爆米花应助pianoboy采纳,获得10
11秒前
萧白竹发布了新的文献求助10
13秒前
时间海发布了新的文献求助10
14秒前
研友_xLOMQZ完成签到,获得积分0
14秒前
14秒前
禾禾发布了新的文献求助10
14秒前
科研通AI5应助舒畅采纳,获得10
15秒前
luci完成签到,获得积分10
15秒前
15秒前
15秒前
16秒前
谨慎乞发布了新的文献求助10
16秒前
一一应助研友_LXONx8采纳,获得10
17秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814731
求助须知:如何正确求助?哪些是违规求助? 3358869
关于积分的说明 10397908
捐赠科研通 3076241
什么是DOI,文献DOI怎么找? 1689750
邀请新用户注册赠送积分活动 813229
科研通“疑难数据库(出版商)”最低求助积分说明 767555