Signed Quasi-Clique Merger: A New Clustering Method for Signed Networks with Positive and Negative Edges

聚类分析 集团 计算机科学 分拆(数论) 节点(物理) 构造(python库) 理论计算机科学 过程(计算) 集团渗流法 层次聚类 数据挖掘 人工智能 数学 组合数学 结构工程 工程类 操作系统 程序设计语言
作者
Xingqin Qi,Ruth Luo,Edgar Fuller,Rong Luo,Cun‐Quan Zhang
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
卷期号:30 (03): 1650006-1650006 被引量:9
标识
DOI:10.1142/s0218001416500063
摘要

Signed networks with both positive and negative links have gained considerable attention over the past several years. Community detection is among the main challenges for signed network analysis. It aims to find mutually antagonistic groups such that entities within the same group have as many positive relationships as possible and entities between different groups have as many negative relationships as possible. Most existing algorithms for community detection in signed networks aim to provide a hard partition of the network where any node should belong to a single community. However, overlapping communities, where a node is allowed to belong to multiple communities, widely exist in many real-world networks. Another disadvantage of some existing algorithms is that the number of final clusters k should be an input of the clustering process. It may however be the case that we do not know k in advance. In this paper, to offer improvements to existing algorithms, we propose a new clustering method for signed networks, the Signed Quasi-clique Merger (SQCM) algorithm. This algorithm detects the meaningful clusters (i.e. subgraphs with high friendly density) from the networks directly, where the friendly density of a subgraph [Formula: see text] is defined as [Formula: see text]. We construct a hierarchically nested system to illustrate their inclusion relationships. The output of SQCM is a smaller hierarchical tree, which clearly highlights meaningful clusters. During the clustering process, we do not need to know the number of final clusters k in advance; the algorithm is able to detect it on its own. Another important feature of SQCM is overlapping clustering or multi-membership. Its effectiveness is demonstrated through rigorous experiments involving both benchmark and randomly generated signed networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaowuge完成签到 ,获得积分10
2秒前
满城烟沙完成签到 ,获得积分0
3秒前
可爱邓邓完成签到 ,获得积分10
6秒前
kangshuai完成签到,获得积分10
8秒前
韩钰小宝完成签到 ,获得积分10
11秒前
旅游家完成签到 ,获得积分10
14秒前
14秒前
西兰花的科研小助手完成签到,获得积分10
16秒前
俏皮元珊完成签到 ,获得积分10
18秒前
七月星河完成签到 ,获得积分10
20秒前
xiaozou55完成签到 ,获得积分10
21秒前
27秒前
甜甜的tiantian完成签到 ,获得积分10
28秒前
甜乎贝贝完成签到 ,获得积分10
29秒前
南宫丽完成签到 ,获得积分10
29秒前
小young完成签到 ,获得积分10
29秒前
平常小凝完成签到,获得积分10
30秒前
xixihaha完成签到,获得积分10
32秒前
吨吨完成签到,获得积分10
35秒前
个性归尘应助科研通管家采纳,获得10
37秒前
个性归尘应助科研通管家采纳,获得10
37秒前
个性归尘应助科研通管家采纳,获得10
37秒前
艳艳宝完成签到 ,获得积分10
40秒前
田甜发布了新的文献求助50
41秒前
想上985完成签到 ,获得积分10
42秒前
北城完成签到 ,获得积分10
42秒前
Jeffery426完成签到,获得积分10
43秒前
红茸茸羊完成签到 ,获得积分10
43秒前
45秒前
wxnice完成签到,获得积分10
51秒前
故意的问安完成签到 ,获得积分10
51秒前
orixero应助喜悦夏青采纳,获得10
55秒前
mary完成签到,获得积分10
57秒前
dominic12361完成签到 ,获得积分10
59秒前
MQ完成签到 ,获得积分10
1分钟前
1分钟前
喜悦夏青发布了新的文献求助10
1分钟前
1分钟前
haochi完成签到,获得积分10
1分钟前
关中人完成签到,获得积分10
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837587
求助须知:如何正确求助?哪些是违规求助? 3379687
关于积分的说明 10510136
捐赠科研通 3099308
什么是DOI,文献DOI怎么找? 1707062
邀请新用户注册赠送积分活动 821402
科研通“疑难数据库(出版商)”最低求助积分说明 772615