最大后验估计
数学
随机场
马尔可夫随机场
高斯分布
高斯随机场
马尔可夫链
人工智能
模式识别(心理学)
算法
隐马尔可夫模型
估计理论
马尔可夫过程
高斯过程
图像(数学)
计算机科学
图像分割
最大似然
统计
量子力学
物理
作者
Charles A. Bouman,K. Sauer
摘要
The authors present a Markov random field model which allows realistic edge modeling while providing stable maximum a posterior (MAP) solutions. The model, referred to as a generalized Gaussian Markov random field (GGMRF), is named for its similarity to the generalized Gaussian distribution used in robust detection and estimation. The model satisfies several desirable analytical and computational properties for map estimation, including continuous dependence of the estimate on the data, invariance of the character of solutions to scaling of data, and a solution which lies at the unique global minimum of the a posteriori log-likelihood function. The GGMRF is demonstrated to be useful for image reconstruction in low-dosage transmission tomography.
科研通智能强力驱动
Strongly Powered by AbleSci AI