亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hollow Mesoporous Plasmonic Nanoshells for Enhanced Solar Vapor Generation

纳米壳 材料科学 等离子体子 纳米技术 等离子纳米粒子 纳米颗粒 介孔材料 成核 纳米材料 吸收(声学) 多孔介质 多孔性 光电子学 化学 复合材料 生物化学 催化作用 有机化学
作者
Marcin Zieliński,Jae‐Woo Choi,Thomas Grange,Miguel A. Modestino,S. Mohammad H. Hashemi,Ye Pu,Susanne T. Birkhold,Jeffrey A. Hubbell,Demetri Psaltis
出处
期刊:Nano Letters [American Chemical Society]
卷期号:16 (4): 2159-2167 被引量:250
标识
DOI:10.1021/acs.nanolett.5b03901
摘要

In the past decade, nanomaterials have made their way into a variety of technologies in solar energy, enhancing the performance by taking advantage of the phenomena inherent to the nanoscale. Recent examples exploit plasmonic core/shell nanoparticles to achieve efficient direct steam generation, showing great promise of such nanoparticles as a useful material for solar applications. In this paper, we demonstrate a novel technique for fabricating bimetallic hollow mesoporous plasmonic nanoshells that yield a higher solar vapor generation rate compared with their solid-core counterparts. On the basis of a combination of nanomasking and incomplete galvanic replacement, the hollow plasmonic nanoshells can be fabricated with tunable absorption and minimized scattering. When exposed to sun light, each hollow nanoshell generates vapor bubbles simultaneously from the interior and exterior. The vapor nucleating from the interior expands and diffuses through the pores and combines with the bubbles formed on the outer wall. The lack of a solid core significantly accelerates the initial vapor nucleation and the overall steam generation dynamics. More importantly, because the density of the hollow porous nanoshells is essentially equal to the surrounding host medium these particles are much less prone to sedimentation, a problem that greatly limits the performance and implementation of standard nanoparticle dispersions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
10秒前
ZhaoW发布了新的文献求助10
15秒前
烟消云散完成签到,获得积分10
20秒前
FashionBoy应助科研通管家采纳,获得10
21秒前
23秒前
Muhammad完成签到,获得积分10
27秒前
28秒前
Muhammad发布了新的文献求助10
29秒前
科研通AI2S应助ZhaoW采纳,获得10
37秒前
1分钟前
nxdsk完成签到,获得积分10
1分钟前
1分钟前
踏实白柏发布了新的文献求助10
1分钟前
李健应助踏实白柏采纳,获得10
1分钟前
EROS完成签到 ,获得积分10
1分钟前
fu完成签到 ,获得积分10
2分钟前
彩色映雁完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
wangfaqing942完成签到 ,获得积分10
3分钟前
传奇3应助WQY采纳,获得10
3分钟前
mingjing完成签到 ,获得积分10
3分钟前
3分钟前
vinci发布了新的文献求助10
3分钟前
WQY发布了新的文献求助10
3分钟前
4分钟前
韶绍完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
ly完成签到 ,获得积分10
4分钟前
4分钟前
hugeyoung完成签到,获得积分10
5分钟前
学生信的大叔完成签到,获得积分10
5分钟前
5分钟前
Guin发布了新的文献求助30
5分钟前
pegasus0802完成签到,获得积分10
5分钟前
5分钟前
mix完成签到,获得积分10
5分钟前
6分钟前
白星辰完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476432
求助须知:如何正确求助?哪些是违规求助? 4578082
关于积分的说明 14363420
捐赠科研通 4505993
什么是DOI,文献DOI怎么找? 2469042
邀请新用户注册赠送积分活动 1456527
关于科研通互助平台的介绍 1430272