Fully hardware-implemented memristor convolutional neural network

记忆电阻器 神经形态工程学 计算机科学 记忆晶体管 卷积神经网络 可扩展性 横杆开关 人工神经网络 冯·诺依曼建筑 计算机体系结构 计算机硬件 电阻随机存取存储器 计算机工程 并行计算 人工智能 深度学习 电子工程 电气工程 工程类 操作系统 数据库 电信 电压
作者
Peng Yao,Huaqiang Wu,Bin Gao,Jianshi Tang,Qingtian Zhang,Wenqiang Zhang,J. Joshua Yang,He Qian
出处
期刊:Nature [Nature Portfolio]
卷期号:577 (7792): 641-646 被引量:1695
标识
DOI:10.1038/s41586-020-1942-4
摘要

Memristor-enabled neuromorphic computing systems provide a fast and energy-efficient approach to training neural networks1–4. However, convolutional neural networks (CNNs)—one of the most important models for image recognition5—have not yet been fully hardware-implemented using memristor crossbars, which are cross-point arrays with a memristor device at each intersection. Moreover, achieving software-comparable results is highly challenging owing to the poor yield, large variation and other non-ideal characteristics of devices6–9. Here we report the fabrication of high-yield, high-performance and uniform memristor crossbar arrays for the implementation of CNNs, which integrate eight 2,048-cell memristor arrays to improve parallel-computing efficiency. In addition, we propose an effective hybrid-training method to adapt to device imperfections and improve the overall system performance. We built a five-layer memristor-based CNN to perform MNIST10 image recognition, and achieved a high accuracy of more than 96 per cent. In addition to parallel convolutions using different kernels with shared inputs, replication of multiple identical kernels in memristor arrays was demonstrated for processing different inputs in parallel. The memristor-based CNN neuromorphic system has an energy efficiency more than two orders of magnitude greater than that of state-of-the-art graphics-processing units, and is shown to be scalable to larger networks, such as residual neural networks. Our results are expected to enable a viable memristor-based non-von Neumann hardware solution for deep neural networks and edge computing. A fully hardware-based memristor convolutional neural network using a hybrid training method achieves an energy efficiency more than two orders of magnitude greater than that of graphics-processing units.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
我是喵完成签到,获得积分10
1秒前
1秒前
winston完成签到,获得积分10
2秒前
2秒前
香蕉觅云应助妮妮采纳,获得10
3秒前
GAOBIN000发布了新的文献求助10
3秒前
小二郎应助酷酷念瑶采纳,获得10
3秒前
所所应助晨雾锁阳采纳,获得10
4秒前
4秒前
耳鼻喉不发言给耳鼻喉不发言的求助进行了留言
4秒前
完美绮琴完成签到,获得积分20
5秒前
honeybee完成签到,获得积分10
5秒前
Akim应助zys采纳,获得10
5秒前
cw123完成签到,获得积分10
5秒前
6秒前
6秒前
Sue完成签到 ,获得积分10
7秒前
7秒前
7秒前
超级的笑天完成签到,获得积分10
9秒前
9秒前
传奇3应助危机的蜜蜂采纳,获得10
9秒前
10秒前
李爱国应助xiu采纳,获得10
10秒前
希望天下0贩的0应助哈哈采纳,获得10
10秒前
可控发布了新的文献求助10
11秒前
11秒前
cquank发布了新的文献求助10
11秒前
闫星宇发布了新的文献求助10
11秒前
请风来守发布了新的文献求助20
12秒前
12秒前
12秒前
pp63应助小苏打采纳,获得10
12秒前
科研通AI5应助汉桑波欸采纳,获得10
13秒前
13秒前
科研通AI5应助Michael采纳,获得10
13秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804835
求助须知:如何正确求助?哪些是违规求助? 3349925
关于积分的说明 10346344
捐赠科研通 3065759
什么是DOI,文献DOI怎么找? 1683265
邀请新用户注册赠送积分活动 808800
科研通“疑难数据库(出版商)”最低求助积分说明 764915