Fully hardware-implemented memristor convolutional neural network

记忆电阻器 神经形态工程学 计算机科学 记忆晶体管 卷积神经网络 可扩展性 横杆开关 人工神经网络 冯·诺依曼建筑 计算机体系结构 计算机硬件 电阻随机存取存储器 计算机工程 并行计算 人工智能 深度学习 电子工程 电气工程 工程类 操作系统 数据库 电信 电压
作者
Peng Yao,Huaqiang Wu,Bin Gao,Jianshi Tang,Qingtian Zhang,Wenqiang Zhang,J. Joshua Yang,He Qian
出处
期刊:Nature [Nature Portfolio]
卷期号:577 (7792): 641-646 被引量:1730
标识
DOI:10.1038/s41586-020-1942-4
摘要

Memristor-enabled neuromorphic computing systems provide a fast and energy-efficient approach to training neural networks1–4. However, convolutional neural networks (CNNs)—one of the most important models for image recognition5—have not yet been fully hardware-implemented using memristor crossbars, which are cross-point arrays with a memristor device at each intersection. Moreover, achieving software-comparable results is highly challenging owing to the poor yield, large variation and other non-ideal characteristics of devices6–9. Here we report the fabrication of high-yield, high-performance and uniform memristor crossbar arrays for the implementation of CNNs, which integrate eight 2,048-cell memristor arrays to improve parallel-computing efficiency. In addition, we propose an effective hybrid-training method to adapt to device imperfections and improve the overall system performance. We built a five-layer memristor-based CNN to perform MNIST10 image recognition, and achieved a high accuracy of more than 96 per cent. In addition to parallel convolutions using different kernels with shared inputs, replication of multiple identical kernels in memristor arrays was demonstrated for processing different inputs in parallel. The memristor-based CNN neuromorphic system has an energy efficiency more than two orders of magnitude greater than that of state-of-the-art graphics-processing units, and is shown to be scalable to larger networks, such as residual neural networks. Our results are expected to enable a viable memristor-based non-von Neumann hardware solution for deep neural networks and edge computing. A fully hardware-based memristor convolutional neural network using a hybrid training method achieves an energy efficiency more than two orders of magnitude greater than that of graphics-processing units.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
喂_你好发布了新的文献求助10
2秒前
3秒前
RayLam完成签到,获得积分10
4秒前
sifan完成签到 ,获得积分10
4秒前
666发布了新的文献求助30
4秒前
5秒前
wangxiangqin完成签到 ,获得积分10
6秒前
tyhmugua完成签到,获得积分10
6秒前
英俊书白发布了新的文献求助10
7秒前
m李完成签到 ,获得积分10
7秒前
LaTeXer应助李希采纳,获得50
7秒前
111发布了新的文献求助10
8秒前
庭有枇杷发布了新的文献求助10
8秒前
9秒前
skskysky发布了新的文献求助10
11秒前
11秒前
重要忆秋完成签到,获得积分10
11秒前
汉堡包应助brier0218采纳,获得10
11秒前
moheng发布了新的文献求助10
12秒前
臭皮完成签到,获得积分0
13秒前
14秒前
我是三三关注了科研通微信公众号
14秒前
14秒前
Alexbirchurros完成签到 ,获得积分10
15秒前
577发布了新的文献求助30
15秒前
15秒前
yy完成签到,获得积分20
16秒前
wanci发布了新的文献求助10
16秒前
英姑应助老板娘采纳,获得10
16秒前
可爱的函函应助执着新蕾采纳,获得10
17秒前
19秒前
核桃应助蘑菇采纳,获得100
20秒前
香蕉觅云应助orangebee采纳,获得30
20秒前
20秒前
充电宝应助星星采纳,获得10
20秒前
lignin发布了新的文献求助10
21秒前
yy发布了新的文献求助10
21秒前
纪鹏飞完成签到,获得积分10
22秒前
Jae完成签到 ,获得积分10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954557
求助须知:如何正确求助?哪些是违规求助? 3500718
关于积分的说明 11100747
捐赠科研通 3231204
什么是DOI,文献DOI怎么找? 1786337
邀请新用户注册赠送积分活动 869958
科研通“疑难数据库(出版商)”最低求助积分说明 801737