Bayesian Neural Networks of Probabilistic Back Propagation for Scalable Learning on Hyper-Parameters

人工神经网络 概率逻辑 人工智能 计算机科学 机器学习 可扩展性 贝叶斯概率 反向传播 贝叶斯网络 数据库
作者
K. Thirupal Reddy,T. Swarnalatha
出处
期刊:Intelligent systems reference library 卷期号:: 47-57 被引量:1
标识
DOI:10.1007/978-3-030-32644-9_6
摘要

Extensive multilayer neural systems prepared with back proliferation have as of late accomplished best in class results in some of issues. This portrays and examines Bayesian Neural Network (BNN). The work shows a couple of various uses of them for grouping and relapse issues. BNNs are included a Probabilistic Model and a Neural Network. The plan of such a plan is to join the qualities of Neural Networks and stochastic demonstrating. Neural Networks display ceaseless capacity approximates abilities. Be that as it may, utilizing back drop for neural networks adapting still has a few disservices, e.g., tuning a substantial figure of hyper-parameters to the information, absence of aligned probabilistic forecasts, and a propensity to over fit the preparation information. The Bayesian way to deal with learning neural systems does not have these issues. Nonetheless, existing Bayesian systems need versatility to expansive dataset and system sizes. In this work we present a novel versatile strategy for learning Bayesian neural systems, got back to probabilistic engendering (PBP). Like traditional back spread, PBP works by figuring a forward engendering of probabilities through the system and afterward completing a retrogressive calculation of inclinations. A progression of analyses on ten true datasets demonstrates that PBP is essentially quicker than different methods, while offering aggressive prescient capacities. Our examination additionally demonstrates that PBP-BNN gives precise appraisals of the back change on the system weights.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wsxx200024完成签到,获得积分10
1秒前
晶晶妹妹完成签到 ,获得积分10
1秒前
1秒前
soso完成签到,获得积分10
2秒前
2秒前
Jasper应助ZZY采纳,获得10
4秒前
5秒前
ysl发布了新的文献求助10
5秒前
wsxx200024发布了新的文献求助10
6秒前
oneonlycrown完成签到,获得积分10
6秒前
6秒前
朴实的寡妇完成签到,获得积分10
9秒前
9秒前
10秒前
Akinmide完成签到 ,获得积分10
10秒前
wzy发布了新的文献求助10
11秒前
无花果应助宋子墨采纳,获得10
11秒前
13秒前
英姑应助俭朴的一曲采纳,获得10
13秒前
zho发布了新的文献求助10
14秒前
wanci应助姜黎采纳,获得10
15秒前
WYQ发布了新的文献求助30
17秒前
开朗小鸽子完成签到 ,获得积分10
17秒前
18秒前
仲夜安完成签到,获得积分10
18秒前
19秒前
Akim应助XLC采纳,获得10
24秒前
宋子墨发布了新的文献求助10
24秒前
科研通AI2S应助谦让之云采纳,获得10
24秒前
Christina完成签到,获得积分10
25秒前
sun_lin完成签到 ,获得积分10
25秒前
25秒前
油条完成签到,获得积分20
25秒前
26秒前
苏大帅爱看文献完成签到,获得积分10
28秒前
宋子墨完成签到,获得积分20
28秒前
29秒前
29秒前
完美世界应助拒绝去偏旁采纳,获得10
29秒前
芝士完成签到 ,获得积分10
32秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814404
求助须知:如何正确求助?哪些是违规求助? 3358503
关于积分的说明 10395700
捐赠科研通 3075750
什么是DOI,文献DOI怎么找? 1689542
邀请新用户注册赠送积分活动 812995
科研通“疑难数据库(出版商)”最低求助积分说明 767428