Application of the XGBoost Machine Learning Method in PM2.5 Prediction: A Case Study of Shanghai

天气研究与预报模式 空气质量指数 环境科学 气象学 空气污染 污染物 空气污染物 气团(太阳能) 统计 数学 地理 代表性启发 有机化学 化学
作者
Jinghui Ma,Zhongqi Yu,Yuanhao Qu,Jianming Xu,Yu Cao
出处
期刊:Aerosol and Air Quality Research [Taiwan Association for Aerosol Research]
卷期号:20 (1): 128-138 被引量:165
标识
DOI:10.4209/aaqr.2019.08.0408
摘要

Air quality forecasting is crucial to reducing air pollution in China, which has detrimental effects on human health. Atmospheric chemical-transport models can provide air pollutant forecasts with high temporal and spatial resolution and are widely used for routine air quality predictions (e.g., 1–3 days in advance). However, the model’s performance is limited by uncertainties in the emission inventory and biases in the initial and boundary conditions, as well as deficiencies in the current chemical and physical schemes. As a result, experimentation with several new methods, such as machine learning, is occurring in the field of air quality forecasting. This study combined hourly PM2.5 mass concentration forecasts from an operational air quality numerical prediction system (WRF-Chem) at the Shanghai Meteorological Service (SMS) with comprehensive near-surface measurements of air pollutants and meteorological conditions to develop a machine learning model that estimates the daily PM2.5 mass concentration in Shanghai, China. With correlation coefficients that are higher by 50–100% and a standard deviation that is lower by 14–24 µg m–3, the machine learning model provides significantly better daily forecasting of PM2.5 than the WRF-Chem model. Thus, this research offers a new technique for enhancing air quality forecasting in China.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洪亭完成签到,获得积分10
刚刚
h8h9完成签到 ,获得积分10
刚刚
简单喀秋莎完成签到,获得积分10
1秒前
阿蕉完成签到 ,获得积分10
1秒前
小米完成签到,获得积分20
1秒前
外向寄云发布了新的文献求助10
1秒前
2秒前
Hao发布了新的文献求助10
2秒前
2秒前
可靠的新柔完成签到,获得积分10
2秒前
Summer完成签到,获得积分10
2秒前
Jasper应助青青采纳,获得10
2秒前
3秒前
爆米花应助唐晓秦采纳,获得10
3秒前
科目三应助关美人儿采纳,获得10
3秒前
IMxYang应助笨笨代曼采纳,获得10
3秒前
4秒前
jiajin发布了新的文献求助30
4秒前
太多完成签到,获得积分10
4秒前
5秒前
高乐多完成签到,获得积分10
5秒前
5秒前
和谐煜祺完成签到,获得积分10
5秒前
6秒前
轻松惜筠发布了新的文献求助10
6秒前
唠叨的葶发布了新的文献求助30
7秒前
7秒前
Jasper应助keanuz采纳,获得10
7秒前
7秒前
baihe完成签到,获得积分10
7秒前
inferyes完成签到,获得积分10
7秒前
7秒前
秀丽人杰发布了新的文献求助20
7秒前
8秒前
8秒前
语秋完成签到,获得积分10
8秒前
wanci应助刻苦的白梅采纳,获得10
9秒前
科研通AI5应助傢誠采纳,获得10
9秒前
HAHAHA发布了新的文献求助10
10秒前
MADAO完成签到,获得积分10
10秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
System of systems: When services and products become indistinguishable 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813277
求助须知:如何正确求助?哪些是违规求助? 3357756
关于积分的说明 10388193
捐赠科研通 3074954
什么是DOI,文献DOI怎么找? 1689097
邀请新用户注册赠送积分活动 812548
科研通“疑难数据库(出版商)”最低求助积分说明 767178