[LIBS Quantitative Analysis of Cr and Ni in Iron Alloys with Support Vector Machine (SVM)].

支持向量机 校准 多元统计 基质(化学分析) 模式识别(心理学) 强度(物理) 数学 计算机科学 人工智能 生物系统 材料科学 统计 光学 物理 生物 复合材料
作者
Ying Zhang,Ying Li,Yanhong Gu,Hao Guo,Na Li
出处
期刊:PubMed 卷期号:36 (7): 2244-8 被引量:1
链接
标识
摘要

For the prediction of the contents of Cr and Ni in alloy steel samples, multivariate quantitative analysis model was established by optimizing the input variables of support vector machine (SVM) model, which could solve the problem of complex matrix effect of steel alloy samples. The results achieved by the integral intensity of characteristic spectral lines as the different inputs of SVM were found better than the intensity, because integral intensity contains more information of spectral line, spectral width and spectral shape; The multiple characteristic spectral lines of the elements as the inputs of SVM were better than using single element characteristic spectral information, because the influence of matrix effect could be corrected by inputting multivariate spectral information. By combining internal calibration with multivariate calibration, the experiment errors can be reduced and the matrix effect can be calibrated, and the repetition rate and accuracy could be improved. With the introduction of the normalized variable as the support vector machine (SVM) model of input variables, the relative errors of the content prediction of Cr in sample S1 and S2 are 6.58% and 1.12% respectively; and the relative errors of the content prediction of Ni in sample S1 and S2 are 13.4% and 4.71% respectively. The experiment results show that the SVM algorithm can be effectively used for LIBS quantitative analysis by combining internal calibration with multivariate calibration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寒冷的断缘完成签到,获得积分10
3秒前
小五完成签到 ,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
5秒前
12345完成签到,获得积分10
6秒前
6秒前
7秒前
江竹兰完成签到,获得积分10
8秒前
xiong完成签到,获得积分10
9秒前
9秒前
9秒前
xxr发布了新的文献求助10
9秒前
10秒前
江竹兰发布了新的文献求助10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
SciGPT应助细腻的孤丝采纳,获得10
11秒前
12秒前
万能图书馆应助STEAM采纳,获得10
13秒前
13秒前
邵洋发布了新的文献求助10
14秒前
Owen应助英俊冰蝶采纳,获得10
15秒前
科研通AI5应助暗号采纳,获得10
15秒前
15秒前
18秒前
今后应助熏弦采纳,获得10
19秒前
19秒前
19秒前
d_fishier完成签到 ,获得积分10
20秒前
爆米花应助大力牌皮揣子采纳,获得10
20秒前
付文娟完成签到,获得积分20
20秒前
jzpPLA发布了新的文献求助10
20秒前
Mine发布了新的文献求助10
20秒前
煲煲煲仔饭完成签到 ,获得积分10
21秒前
星辰大海应助whwh采纳,获得10
22秒前
敢为天下先完成签到,获得积分10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4850203
求助须知:如何正确求助?哪些是违规求助? 4149569
关于积分的说明 12854373
捐赠科研通 3896954
什么是DOI,文献DOI怎么找? 2141955
邀请新用户注册赠送积分活动 1161549
关于科研通互助平台的介绍 1061411