Quantifying urban wastewater treatment sector's greenhouse gas emissions using a hybrid life cycle analysis method – An application on Shenzhen city in China

温室气体 生命周期评估 环境科学 废水 污水处理 环境工程 废物管理 工程类 生态学 生产(经济) 生物 电气工程 宏观经济学 经济
作者
Xiawei Liao,Yujia Tian,Yiwei Gan,Junping Ji
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:745: 141176-141176 被引量:87
标识
DOI:10.1016/j.scitotenv.2020.141176
摘要

Substantial amounts of greenhouse gas (GHG) emissions generated at urban wastewater treatment plants (WWTP) are gaining increasing appreciation. Improving upon the commonly used Process-Based Life-Cycle Analysis (PLCA) and Environmentally-Extended Life-Cycle Analysis (EIO-LCA) models, we construct a Hybrid Life Cycle Analysis (HLCA) model and quantify both direct and indirect GHG emissions at the operational stage of WWTPs in Shenzhen, one of the fastest urbanizing cities in the world. Data are collected from 26 wastewater treatment plants in Shenzhen, out of all 32, covering 5 commonly used wastewater treatment technologies in China, i.e. Sequencing Batch Reactor, Oxidation Ditch, Biological Filter, AAO-MBR and AAO. The results show that WWTPs using AAO-MBR technology have the highest GHG emission intensity, averaging 0.79 tons per m3, primarily due to its large electricity intensity required. WWTPs using other technologies emit 0.27 to 0.39 tons of GHGs per m3 of wastewater treated. GHG emissions associated with electricity use occupy the largest share, ranging from 65 to 75%. Therefore, transforming the energy structure of the electric power sector to low-carbon sources can reduce WWTPs operational GHG emissions. In total, GHG emissions from Shenzhen's urban wastewater sector have increased from below 0.5 million tons in 2012 to over 0.6 million tons in 2017. Inter-model comparison shows that EIO-LCA substantially underestimates the urban wastewater sector's GHG emissions using the water sector's average parameters while PLCA also results in minor underestimations due the omission of indirect emissions in the production stage of chemicals and other material inputs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助Master采纳,获得10
1秒前
吴zzzz发布了新的文献求助10
1秒前
1111完成签到 ,获得积分10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
一个千年猪妖完成签到 ,获得积分10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
冰魂应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
结实星星发布了新的文献求助10
4秒前
4秒前
5秒前
祁归一发布了新的文献求助10
7秒前
领导范儿应助cotton采纳,获得10
7秒前
8秒前
思思完成签到,获得积分10
9秒前
依霏发布了新的文献求助10
10秒前
10秒前
竹筏过海应助jam采纳,获得30
11秒前
姚美阁发布了新的文献求助10
12秒前
Master发布了新的文献求助10
13秒前
ZZ发布了新的文献求助10
14秒前
jenningseastera应助duduguai采纳,获得10
15秒前
15秒前
闪闪落雁完成签到,获得积分10
17秒前
文天发布了新的文献求助10
17秒前
18秒前
Agan完成签到,获得积分10
21秒前
zhhh发布了新的文献求助10
21秒前
Djo完成签到,获得积分10
22秒前
斯文败类应助难过盼海采纳,获得10
25秒前
26秒前
Flame完成签到,获得积分10
28秒前
小朱完成签到,获得积分10
30秒前
小唐发布了新的文献求助10
31秒前
Flame发布了新的文献求助10
33秒前
胖虎爱睡觉完成签到,获得积分10
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781669
求助须知:如何正确求助?哪些是违规求助? 3327234
关于积分的说明 10230111
捐赠科研通 3042093
什么是DOI,文献DOI怎么找? 1669791
邀请新用户注册赠送积分活动 799335
科研通“疑难数据库(出版商)”最低求助积分说明 758774