An integrated approach to automatic pixel-level crack detection and quantification of asphalt pavement

交叉口(航空) 像素 沥青路面 计算机科学 沥青 结构工程 卷积神经网络 工程类 人工智能 材料科学 运输工程 复合材料
作者
Ankang Ji,Xiaolong Xue,Yuna Wang,Xiaowei Luo,Weirui Xue
出处
期刊:Automation in Construction [Elsevier BV]
卷期号:114: 103176-103176 被引量:220
标识
DOI:10.1016/j.autcon.2020.103176
摘要

Abstract Discovering and assessing cracks is widely thought to be critical for maintaining the healthy conditions of asphalt pavement. Unfortunately, the inspection of pavement for cracks is not only labor-intensive, time-consuming, inefficient, and costly, but it is also unable to detect and quantify cracks accurately at the pixel level. To address this problem, we propose an integrated approach based on the convolutional neural network DeepLabv3+ for crack detection, as well as a crack quantification algorithm for crack quantification at the pixel level. The quantification algorithm is used to evaluate five important indicators: crack length, mean width, maximum width, area, and ratio. To fully verify the performance of DeepLabv3+, 50 images were studied; the best image showed a mean intersection of union (MIoU) of 0.8342. For testing, 80 new images (including both asphalt pavement images and concrete pavement images) were used. DeepLabv3+ was found to be reliable and widely applicable for crack detection, and it demonstrated an MIoU of 0.7331. Of the various quantitative indicators, the crack length had the lowest relative error rate of the predicted values and therefore had the highest accuracy (its relative error rate ranged from −25.93% to 14.11%). We also compared our system with four state-of-the-art methods. The results showed our integrated approach to be more effective and more accurate in both the detection and quantification of cracks. The integrated approach could potentially serve as the basis of an automated, cost-effective pavement-condition assessment scheme for the operation and maintenance of pavement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yuanying应助sean采纳,获得10
1秒前
科研通AI2S应助魔幻海豚采纳,获得10
2秒前
3秒前
天天快乐应助丰富的妙柏采纳,获得10
6秒前
6秒前
小马甲应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
独角兽发布了新的文献求助10
8秒前
9秒前
汤泽琪发布了新的文献求助30
12秒前
汪汪汪完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
15秒前
桐桐应助怕孤独的友桃采纳,获得10
16秒前
giucher发布了新的文献求助10
18秒前
江屿发布了新的文献求助10
19秒前
19秒前
21秒前
缥缈的幻雪完成签到 ,获得积分10
21秒前
21秒前
科研小虫完成签到,获得积分10
21秒前
24秒前
庸尘完成签到,获得积分10
24秒前
lyx完成签到,获得积分10
25秒前
wanci应助光而不耀采纳,获得10
26秒前
科目三应助真洋子哈采纳,获得10
27秒前
27秒前
jzyy发布了新的文献求助10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Immigrant Incorporation in East Asian Democracies 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3972334
求助须知:如何正确求助?哪些是违规求助? 3516836
关于积分的说明 11184871
捐赠科研通 3252297
什么是DOI,文献DOI怎么找? 1796357
邀请新用户注册赠送积分活动 876339
科研通“疑难数据库(出版商)”最低求助积分说明 805488