已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-Attention-Network for Semantic Segmentation of Fine Resolution Remote Sensing Images

人工智能 模式识别(心理学) 计算机视觉 图像(数学) 深度学习
作者
Rui Li,Shunyi Zheng,Chenxi Duan,Ce Zhang,Jianlin Su,Peter M. Atkinson
出处
期刊:arXiv: Image and Video Processing 被引量:10
标识
DOI:10.1109/tgrs.2021.3093977
摘要

Semantic segmentation of remote sensing images plays an important role in a wide range of applications including land resource management, biosphere monitoring and urban planning. Although the accuracy of semantic segmentation in remote sensing images has been increased significantly by deep convolutional neural networks, several limitations exist in standard models. First, for encoder-decoder architectures such as U-Net, the utilization of multi-scale features causes the underuse of information, where low-level features and high-level features are concatenated directly without any refinement. Second, long-range dependencies of feature maps are insufficiently explored, resulting in sub-optimal feature representations associated with each semantic class. Third, even though the dot-product attention mechanism has been introduced and utilized in semantic segmentation to model long-range dependencies, the large time and space demands of attention impede the actual usage of attention in application scenarios with large-scale input. This paper proposed a Multi-Attention-Network (MANet) to address these issues by extracting contextual dependencies through multiple efficient attention modules. A novel attention mechanism of kernel attention with linear complexity is proposed to alleviate the large computational demand in attention. Based on kernel attention and channel attention, we integrate local feature maps extracted by ResNeXt-101 with their corresponding global dependencies and reweight interdependent channel maps adaptively. Numerical experiments on three large-scale fine resolution remote sensing images captured by different satellite sensors demonstrate the superior performance of the proposed MANet, outperforming the DeepLab V3+, PSPNet, FastFCN, DANet, OCRNet, and other benchmark approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jenny完成签到,获得积分10
1秒前
蔡翌文完成签到 ,获得积分10
1秒前
结实初翠发布了新的文献求助10
1秒前
朴实的青文完成签到,获得积分10
2秒前
2秒前
呼呼夫人完成签到 ,获得积分10
2秒前
NiceSunnyDay完成签到 ,获得积分10
3秒前
5秒前
CipherSage应助儒雅凡桃采纳,获得10
6秒前
孤独如曼完成签到 ,获得积分10
6秒前
6秒前
hhh发布了新的文献求助10
7秒前
科研路上互帮互助,共同进步完成签到 ,获得积分10
7秒前
笨笨千亦完成签到 ,获得积分10
9秒前
ddrose发布了新的文献求助10
9秒前
科研通AI5应助Jenny712采纳,获得10
14秒前
乐乐应助DrKe采纳,获得10
15秒前
吃的饭广泛完成签到 ,获得积分10
17秒前
111111完成签到,获得积分10
18秒前
enjoy完成签到,获得积分10
19秒前
SAXA完成签到,获得积分10
19秒前
AriseChen完成签到,获得积分10
20秒前
荀万声完成签到,获得积分10
23秒前
脑洞疼应助shjdjhs采纳,获得30
24秒前
斯文败类应助enjoy采纳,获得10
26秒前
jhlz5879完成签到 ,获得积分10
26秒前
斯文败类应助一一采纳,获得10
26秒前
numagok完成签到,获得积分10
27秒前
蔚蓝完成签到 ,获得积分10
28秒前
Orange应助结实初翠采纳,获得10
33秒前
34秒前
缥缈涵菡完成签到,获得积分10
38秒前
CodeCraft应助nnnnnn采纳,获得10
38秒前
returno_0发布了新的文献求助10
41秒前
赘婿应助科研通管家采纳,获得10
41秒前
科研通AI2S应助科研通管家采纳,获得10
41秒前
共享精神应助科研通管家采纳,获得30
41秒前
华仔应助科研通管家采纳,获得10
42秒前
桐桐应助科研通管家采纳,获得10
42秒前
AEROU完成签到 ,获得积分10
42秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800821
求助须知:如何正确求助?哪些是违规求助? 3346351
关于积分的说明 10329064
捐赠科研通 3062766
什么是DOI,文献DOI怎么找? 1681193
邀请新用户注册赠送积分活动 807425
科研通“疑难数据库(出版商)”最低求助积分说明 763702