清脆的
生物
计算生物学
CRISPR干扰
基因
流动遗传元素
新颖性
基因组编辑
遗传学
基因组
神学
哲学
作者
Kira S. Makarova,Yuri I. Wolf,Jaime Iranzo,Sergey Shmakov,Omer S. Alkhnbashi,Stan J. J. Brouns,Emmanuelle Charpentier,David R. Cheng,Daniel H. Haft,Philippe Horvath,Sylvain Moineau,Francisco J. M. Mojica,David Scott,Shiraz A. Shah,Virginijus Šikšnys,Michael P. Terns,Česlovas Venclovas,Malcolm F. White,Alexander F. Yakunin,Winston X. Yan
标识
DOI:10.1038/s41579-019-0299-x
摘要
The number and diversity of known CRISPR–Cas systems have substantially increased in recent years. Here, we provide an updated evolutionary classification of CRISPR–Cas systems and cas genes, with an emphasis on the major developments that have occurred since the publication of the latest classification, in 2015. The new classification includes 2 classes, 6 types and 33 subtypes, compared with 5 types and 16 subtypes in 2015. A key development is the ongoing discovery of multiple, novel class 2 CRISPR–Cas systems, which now include 3 types and 17 subtypes. A second major novelty is the discovery of numerous derived CRISPR–Cas variants, often associated with mobile genetic elements that lack the nucleases required for interference. Some of these variants are involved in RNA-guided transposition, whereas others are predicted to perform functions distinct from adaptive immunity that remain to be characterized experimentally. The third highlight is the discovery of numerous families of ancillary CRISPR-linked genes, often implicated in signal transduction. Together, these findings substantially clarify the functional diversity and evolutionary history of CRISPR–Cas. The number and diversity of known CRISPR–Cas systems have substantially increased in recent years. In this Review, Koonin and colleagues provide an updated evolutionary classification of CRISPR–Cas systems and cas genes, with an emphasis on major developments, and outline a complete scenario for the origins and evolution of CRISPR–Cas systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI