前列腺癌
癌症研究
医学
谷氨酸羧肽酶Ⅱ
体内
癌症
内科学
生物
生物技术
作者
Stefanie Hammer,Urs B. Hagemann,Sabine Zitzmann-Kolbe,A Dawson Larsen,Christine Ellingsen,Solène Géraudie,Derek Grant,Baard Indrevoll,Roger Smeets,Oliver von Ahsen,Alexander Kristian,Pascale Lejeune,Hartwig Hennekes,Jenny Karlsson,Roger M. Bjerke,Olav B. Ryan,Alan Cuthbertson,Dominik Mumberg
标识
DOI:10.1158/1078-0432.ccr-19-2268
摘要
Abstract Purpose: Prostate-specific membrane antigen (PSMA) is an attractive target for radionuclide therapy of metastatic castration-resistant prostate cancer (mCRPC). PSMA-targeted alpha therapy (TAT) has shown early signs of activity in patients with prostate cancer refractory to beta radiation. We describe a novel, antibody-based TAT, the PSMA-targeted thorium-227 conjugate PSMA-TTC (BAY 2315497) consisting of the alpha-particle emitter thorium-227 complexed by a 3,2-HOPO chelator covalently linked to a fully human PSMA-targeting antibody. Experimental Design: PSMA-TTC was characterized for affinity, mode of action, and cytotoxic activity in vitro. Biodistribution, pharmacokinetics, and antitumor efficacy were investigated in vivo using cell line and patient-derived xenograft (PDX) models of prostate cancer. Results: PSMA-TTC was selectively internalized into PSMA-positive cells and potently induced DNA damage, cell-cycle arrest, and apoptosis in vitro. Decrease in cell viability was observed dependent on the cellular PSMA expression levels. In vivo, PSMA-TTC showed strong antitumor efficacy with T/C values of 0.01 to 0.31 after a single injection at 300 to 500 kBq/kg in subcutaneous cell line and PDX models, including models resistant to standard-of-care drugs such as enzalutamide. Furthermore, inhibition of both cancer and cancer-induced abnormal bone growth was observed in a model mimicking prostate cancer metastasized to bone. Specific tumor uptake and efficacy were demonstrated using various PSMA-TTC doses and dosing schedules. Induction of DNA double-strand breaks was identified as a key mode of action for PSMA-TTC both in vitro and in vivo. Conclusions: The strong preclinical antitumor activity of PSMA-TTC supports its clinical evaluation, and a phase I trial is ongoing in mCRPC patients (NCT03724747).
科研通智能强力驱动
Strongly Powered by AbleSci AI