Simulation of a machine vision system for reflective surface defect inspection based on ray tracing

光学 分布式光线跟踪 蒙特卡罗方法 双向反射分布函数 针孔(光学) 光线追踪(物理) 针孔相机模型 计算机科学 机器视觉 过程(计算) 人工智能 计算机视觉 渲染(计算机图形) 摄像机切除 反射率 物理 摄像机自动校准 数学 统计 操作系统
作者
Pengfei Zhang,Pin Cao,Yongying Yang,Pan Guo,Shiwei Chen,Danhui Zhang
出处
期刊:Applied Optics [Optica Publishing Group]
卷期号:59 (8): 2656-2656 被引量:6
标识
DOI:10.1364/ao.385486
摘要

A complete simulation of a machine vision system aimed at defect inspection on a reflective surface is proposed by ray tracing. The simulated scene is composed of the camera model, surface reflectance property, and light intensity distribution along with their corresponding object geometries. A virtual reflective plane geometry with scratches of various directions and pits of various sizes is built as the sample. Its realistic image is obtained by Monte Carlo ray tracing. Compared to the pinhole camera model, the camera model with a finite aperture emits more rays to deliver physical imaging. The bidirectional reflectance distribution function is applied to describe the surface reflectance property. The illustrated machine vision system captures a number of images while translating the light tubes. Then the image sequence obtained by experiment or simulation is fused to generate a well-contrasted synthetic image for defect detection. A flexible fusion method based on differential images is introduced to enhance the defect contrast on a uniform flawless background. To improve detection efficiency, defect contrast of synthetic images obtained by various fusion methods is evaluated. Influence of total image number, light tube width, and fusion interval is further discussed to optimize the inspection process. Experiments on car painted surfaces have shown that the simulated parameters can instruct the setup of the optical system and detect surface defects efficiently. The proposed simulation is capable of saving great effort in carrying out experimental trials and making improvements on reflective surface defect inspection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
勤劳的雁凡完成签到,获得积分10
2秒前
香皂佬完成签到,获得积分10
4秒前
Allen完成签到,获得积分10
4秒前
Wally发布了新的文献求助10
5秒前
6秒前
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
叁拾肆完成签到 ,获得积分10
7秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
xjcy应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
8秒前
9秒前
11秒前
szd发布了新的文献求助50
11秒前
哈哈完成签到 ,获得积分10
11秒前
Mr朱发布了新的文献求助50
11秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
13秒前
橘子海完成签到,获得积分10
13秒前
瑾木完成签到,获得积分10
14秒前
xiaoyeken发布了新的文献求助20
15秒前
17秒前
颖颖子完成签到,获得积分10
18秒前
huy完成签到 ,获得积分10
18秒前
20秒前
21秒前
23秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 666
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4247582
求助须知:如何正确求助?哪些是违规求助? 3780633
关于积分的说明 11870054
捐赠科研通 3433843
什么是DOI,文献DOI怎么找? 1884655
邀请新用户注册赠送积分活动 936234
科研通“疑难数据库(出版商)”最低求助积分说明 842161