亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Construction of a virtual PM2.5 observation network in China based on high-density surface meteorological observations using the Extreme Gradient Boosting model

均方误差 环境科学 后发 气象学 梯度升压 统计 气候学 计算机科学 数学 地理 随机森林 地质学 机器学习
作者
Ke Gui,Huizheng Che,Zhaoliang Zeng,Yaqiang Wang,Shixian Zhai,Zemin Wang,Ming Luo,Lei Zhang,Tingting Liao,Huiling Zhao,Lei Li,Yu Zheng,Xiaoye Zhang
出处
期刊:Environment International [Elsevier BV]
卷期号:141: 105801-105801 被引量:81
标识
DOI:10.1016/j.envint.2020.105801
摘要

With increasing public concerns on air pollution in China, there is a demand for long-term continuous PM2.5 datasets. However, it was not until the end of 2012 that China established a national PM2.5 observation network. Before that, satellite-retrieved aerosol optical depth (AOD) was frequently used as a primary predictor to estimate surface PM2.5. Nevertheless, satellite-retrieved AOD often encounter incomplete daily coverage due to its sampling frequency and interferences from cloud, which greatly affect the representation of these AOD-based PM2.5. Here, we constructed a virtual ground-based PM2.5 observation network at 1180 meteorological sites across China using the Extreme Gradient Boosting (XGBoost) model with high-density meteorological observations as major predictors. Cross-validation of the XGBoost model showed strong robustness and high accuracy in its estimation of the daily (monthly) PM2.5 across China in 2018, with R2, root-mean-square error (RMSE) and mean absolute error values of 0.79 (0.92), 15.75 μg/m3 (6.75 μg/m3) and 9.89 μg/m3 (4.53 μg/m3), respectively. Meanwhile, we find that surface visibility plays the dominant role in terms of the relative importance of variables in the XGBoost model, accounting for 39.3% of the overall importance. We then use meteorological and PM2.5 data in the year 2017 to assess the predictive capability of the model. Results showed that the XGBoost model is capable to accurately hindcast historical PM2.5 at monthly (R2 = 0.80, RMSE = 14.75 μg/m3), seasonal (R2 = 0.86, RMSE = 12.28 μg/m3), and annual (R2 = 0.81, RMSE = 10.10 μg/m3) mean levels. In general, the newly constructed virtual PM2.5 observation network based on high-density surface meteorological observations using the Extreme Gradient Boosting model shows great potential in reconstructing historical PM2.5 at ~1000 meteorological sites across China. It will be of benefit to filling gaps in AOD-based PM2.5 data, as well as to other environmental studies including epidemiology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助jiaobu采纳,获得10
7秒前
eccentric完成签到,获得积分10
14秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
科研通AI5应助Tia采纳,获得10
2分钟前
2分钟前
性静H情逸发布了新的文献求助10
2分钟前
性静H情逸完成签到,获得积分10
2分钟前
wbs13521完成签到,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
baobeikk完成签到 ,获得积分10
4分钟前
双手外科结完成签到,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
6分钟前
所所应助积极的凝海采纳,获得10
6分钟前
NaCl完成签到 ,获得积分10
6分钟前
开心每一天完成签到 ,获得积分10
7分钟前
7分钟前
英俊的铭应助科研通管家采纳,获得10
7分钟前
于东完成签到,获得积分10
7分钟前
7分钟前
星辰大海应助于东采纳,获得10
7分钟前
jiaobu发布了新的文献求助10
7分钟前
学术骗子小刚完成签到,获得积分0
7分钟前
7分钟前
balko完成签到,获得积分10
8分钟前
华仔应助jiaobu采纳,获得10
8分钟前
萝卜丁完成签到 ,获得积分0
8分钟前
9分钟前
yyy发布了新的文献求助10
9分钟前
10分钟前
orixero应助Kevin采纳,获得10
10分钟前
满意人英完成签到,获得积分10
10分钟前
10分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 520
Introduction to Strong Mixing Conditions Volumes 1-3 500
Fine Chemicals through Heterogeneous Catalysis 430
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795590
求助须知:如何正确求助?哪些是违规求助? 3340629
关于积分的说明 10300837
捐赠科研通 3057157
什么是DOI,文献DOI怎么找? 1677522
邀请新用户注册赠送积分活动 805442
科研通“疑难数据库(出版商)”最低求助积分说明 762544