EXPLORING THE POTENTIAL OF PHONETIC SYMBOLS AND KEYWORDS AS LABELS FOR PERCEPTUAL TRAINING

发音 感知 心理学 辅音 元音 语音学 语言学 认知心理学 语音识别 计算机科学 哲学 神经科学
作者
Jonás Fouz-González,Jose A. Mompeán
出处
期刊:Studies in Second Language Acquisition [Cambridge University Press]
卷期号:43 (2): 297-328 被引量:16
标识
DOI:10.1017/s0272263120000455
摘要

Abstract This study investigated the potential of phonetic symbols and keywords as response labels for perceptual training of L2 sounds. Seventy-one Spanish learners of English were assigned to three groups: symbols, keywords, and control. Students in the symbols and keywords groups followed a 4-week High Variability Phonetic Training (HVPT) program based on identification tasks. The target aspects addressed were eight English vowels that tend to be problematic for Spanish EFL learners (/iː ɪ æ ʌ ɜː e ɒ ɔː/). Training stimuli consisted of consonant-vowel-consonant (CVC) nonwords featuring these vowels on a range of phonetic contexts. Overall, the results revealed significant differences between the perception gains made by the two experimental groups, which performed similarly, and the control group. Both experimental groups were able to transfer gains to untrained nonwords, and to untrained voices. Moreover, gains were maintained over time. Improvements were also made in real words, especially by the symbols group, although no significant differences were found between groups. The results suggest that both phonetic symbols and keywords are effective labels for perceptual training and the creation/consolidation of perceptual sound categories. The study offers further evidence of the effectiveness of HVPT for pronunciation training as well as implications for perceptual training studies and language teaching.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
littlestone完成签到,获得积分10
刚刚
充电宝应助阳光的道消采纳,获得10
1秒前
合适秋寒完成签到 ,获得积分10
1秒前
桐桐应助Rhannnn采纳,获得10
2秒前
xL关注了科研通微信公众号
6秒前
汉堡包应助企鹅乌云采纳,获得10
9秒前
科目三应助伯劳采纳,获得10
9秒前
搜集达人应助内向煎饼采纳,获得10
10秒前
11秒前
大约在冬季完成签到,获得积分10
13秒前
烟花应助桔梗采纳,获得10
13秒前
研友_Z7gKEZ完成签到,获得积分10
15秒前
飞飞完成签到 ,获得积分10
15秒前
cryscilla完成签到,获得积分10
15秒前
小齐天完成签到,获得积分20
15秒前
16秒前
xx发布了新的文献求助10
16秒前
16秒前
17秒前
旺仔发布了新的文献求助10
17秒前
陈YX关注了科研通微信公众号
17秒前
研友_VZG7GZ应助cryscilla采纳,获得10
20秒前
22秒前
22秒前
呦呦又鹿完成签到,获得积分10
23秒前
24秒前
科研通AI2S应助刻苦大叔采纳,获得10
24秒前
24秒前
拾姑娘的小稻穗给拾姑娘的小稻穗的求助进行了留言
24秒前
田一点完成签到,获得积分10
25秒前
企鹅乌云发布了新的文献求助10
26秒前
阿杜发布了新的文献求助10
27秒前
Orange应助侯谋采纳,获得10
27秒前
28秒前
punker发布了新的文献求助10
29秒前
30秒前
32秒前
大模型应助小齐天采纳,获得30
32秒前
33秒前
33秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development 200
Gothic forms of feminine fictions 200
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836283
求助须知:如何正确求助?哪些是违规求助? 3378620
关于积分的说明 10505293
捐赠科研通 3098250
什么是DOI,文献DOI怎么找? 1706351
邀请新用户注册赠送积分活动 820987
科研通“疑难数据库(出版商)”最低求助积分说明 772351