亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cyclic plasticity of an interstitial high-entropy alloy: experiments, crystal plasticity modeling, and simulations

材料科学 可塑性 马氏体 晶体塑性 硬化(计算) 本构方程 高熵合金 合金 冶金 结构工程 有限元法 微观结构 复合材料 工程类 图层(电子)
作者
Xiaochong Lü,Jianfeng Zhao,Chao Yu,Zhiming Li,Qianhua Kan,Guozheng Kang,Xu Zhang
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier BV]
卷期号:142: 103971-103971 被引量:84
标识
DOI:10.1016/j.jmps.2020.103971
摘要

The development of high-entropy alloys (HEAs) comprising multiple principal components is an innovative design strategy for metallic materials from the perspective of thermodynamic entropy. However, despite their potential candidacy for engineering applications, the lack of research on the cyclic loading responses as well as constitutive modeling of the HEAs is a major constraint. Therefore, the present work focuses on the cyclic plasticity of a typical carbon-doped interstitial HEA (iHEA) with nominal composition Fe49.5Mn30Co10Cr10C0.5 (at.%). The results of stress-controlled cyclic tests with nonzero mean stress showed that the iHEA exhibits significant cyclic hardening and stress level–dependent ratcheting. Owing to its improved cyclic hardening, the saturated ratcheting strain rate of the iHEA is lower than that of conventional steels such as the 316L stainless steel. Furthermore, microscopic characterizations revealed that the cyclic deformations caused massive martensitic phase transformation and hierarchical structures in the iHEA. The experimental results were used to develop a physical mechanism-based crystal plasticity constitutive model that is capable of describing the cyclic plasticity of the iHEA, which was implemented into a finite element framework. The simulation results showed that the loading stress significantly affected the microstructural evolutions, leading to a stress level–dependent cyclic plasticity. Thus, this investigation provides a fundamental basis for fatigue tests and service life prediction/optimization of the iHEA in the future, which can promote its engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GingerF应助药石无医采纳,获得50
11秒前
汉堡包应助1234采纳,获得10
31秒前
39秒前
啦啦啦完成签到,获得积分10
47秒前
59秒前
1分钟前
1分钟前
肖邦完成签到,获得积分10
1分钟前
肖邦发布了新的文献求助10
1分钟前
1分钟前
diaoyulao完成签到,获得积分10
1分钟前
肖邦发布了新的文献求助10
1分钟前
jyy完成签到,获得积分10
1分钟前
diaoyulao发布了新的文献求助10
1分钟前
李志全完成签到 ,获得积分10
1分钟前
立夏完成签到,获得积分10
2分钟前
Tianju完成签到,获得积分10
2分钟前
无花果应助科研通管家采纳,获得10
3分钟前
从容芮应助科研通管家采纳,获得10
3分钟前
炜大的我应助科研通管家采纳,获得10
3分钟前
炜大的我应助科研通管家采纳,获得10
3分钟前
3分钟前
1234发布了新的文献求助10
3分钟前
古铜完成签到 ,获得积分10
3分钟前
ET完成签到,获得积分10
3分钟前
1234完成签到,获得积分10
3分钟前
4分钟前
麻辣小龙虾完成签到,获得积分10
4分钟前
5分钟前
5分钟前
5分钟前
张志超完成签到,获得积分10
6分钟前
药石无医完成签到,获得积分10
6分钟前
药石无医发布了新的文献求助10
6分钟前
7分钟前
喜悦荧应助科研通管家采纳,获得10
7分钟前
火星完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
ss完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
La RSE en pratique 400
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4428146
求助须知:如何正确求助?哪些是违规求助? 3905834
关于积分的说明 12137683
捐赠科研通 3551825
什么是DOI,文献DOI怎么找? 1949134
邀请新用户注册赠送积分活动 989240
科研通“疑难数据库(出版商)”最低求助积分说明 885126