嵌入
指数函数
欧几里得空间
功能(生物学)
正规化(语言学)
航程(航空)
数学
欧几里德几何
计算机科学
向量空间
三角函数
算法
数学分析
纯数学
人工智能
几何学
工程类
生物
航空航天工程
进化生物学
作者
Ēvalds Urtāns,Agris Nitkitenko,Valters Vēciņš
标识
DOI:10.1145/3388142.3388163
摘要
This paper introduces a novel variant of the Triplet Loss function that converges faster and gives better results. This function can separate class instances homogeneously through the whole embedding space. With Exponential Triplet Loss function we also introduce a novel type of embedding space regularization Unit-Range and Unit-Bounce that utilizes euclidean space more efficiently and resembles features of the cosine distance. We also examined factors for choosing the best embedding vector size for specific embedding spaces. Finally, we also demonstrate how new function can train models for one-shot learning and re-identification tasks.
科研通智能强力驱动
Strongly Powered by AbleSci AI