Deep-Convolution-Based LSTM Network for Remaining Useful Life Prediction

预言 深度学习 卷积(计算机科学) 计算机科学 卷积神经网络 人工智能 编码(内存) 模式识别(心理学) 计算 网络体系结构 人工神经网络 数据挖掘 机器学习 算法 计算机安全
作者
Meng Ma,Zhu Mao
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:17 (3): 1658-1667 被引量:282
标识
DOI:10.1109/tii.2020.2991796
摘要

Accurate prediction of remaining useful life (RUL) has been a critical and challenging problem in the field of prognostics and health management (PHM), which aims to make decisions on which component needs to be replaced when. In this article, a novel deep neural network named convolution-based long short-term memory (CLSTM) network is proposed to predict the RUL of rotating machineries mining the in situ vibration data. Different from previous research that simply connects a convolutional neural network (CNN) to a long short-term memory (LSTM) network serially, the proposed network conducts convolutional operation on both the input-to-state and state-to-state transitions of the LSTM, which contains both time-frequency and temporal information of signals, not only preserving the advantages of LSTM, but also incorporating time-frequency features. The convolutional structure in the LSTM has the ability to capture long-term dependencies and extract features from the time-frequency domain at the same time. By stacking the multiple CLSTM layer-by-layer and forming an encoding-forecasting architecture, the deep learning model is established for RUL prediction in this article. Run-to-failure tests on bearings are conducted, and vibration responses are collected. Using the proposed algorithm, RUL is predicted, and as a comparison, the performance from other methods, including deep CNNs and deep LSTM, is evaluated using the same dataset. The comparative study indicates that the proposed CLSTM network outperforms the current deep learning algorithms in URL prediction and system prognosis with respect to better accuracy and computation efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhuhaot发布了新的文献求助30
刚刚
ljj发布了新的文献求助10
刚刚
刚刚
1123334完成签到,获得积分10
1秒前
唐思远完成签到,获得积分10
1秒前
Eine发布了新的文献求助10
2秒前
9C完成签到,获得积分10
2秒前
3秒前
zz完成签到,获得积分10
4秒前
深情安青应助宫冷雁采纳,获得10
4秒前
5秒前
西北望完成签到,获得积分20
5秒前
今后应助tingting372采纳,获得10
5秒前
勤恳擎宇发布了新的文献求助10
6秒前
yangjiafengzi发布了新的文献求助200
6秒前
7秒前
嘟嘟发布了新的文献求助10
8秒前
小陆完成签到,获得积分10
8秒前
8秒前
licheng完成签到,获得积分10
8秒前
8秒前
9秒前
10秒前
溪流冲浪发布了新的文献求助10
10秒前
领导范儿应助仄兀采纳,获得10
11秒前
ljj完成签到,获得积分10
11秒前
蔺博涵发布了新的文献求助10
11秒前
宫夏菡完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
彭于晏应助Master_Ye采纳,获得10
13秒前
yunna_ning完成签到,获得积分0
13秒前
13秒前
李青荣发布了新的文献求助10
13秒前
万能图书馆应助勤恳擎宇采纳,获得10
14秒前
吴应涛发布了新的文献求助10
14秒前
哭泣灯泡应助大胆猕猴桃采纳,获得10
14秒前
14秒前
烟花应助laura采纳,获得10
14秒前
科研通AI2S应助席松采纳,获得10
14秒前
爱读书完成签到,获得积分10
15秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Learning to Listen, Listening to Learn 570
The Psychology of Advertising (5th edition) 550
Key Questions in Second Language Acquisition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3873370
求助须知:如何正确求助?哪些是违规求助? 3415602
关于积分的说明 10695179
捐赠科研通 3139870
什么是DOI,文献DOI怎么找? 1732411
邀请新用户注册赠送积分活动 835401
科研通“疑难数据库(出版商)”最低求助积分说明 781963