Short-term rainfall forecasting using machine learning-based approaches of PSO-SVR, LSTM and CNN

计算机科学 支持向量机 人工神经网络 人工智能 卷积神经网络 机器学习 期限(时间) 量子力学 物理
作者
Fatemeh Rezaei Aderyani,S. Jamshid Mousavi,Fatemeh Jafari
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:614: 128463-128463 被引量:115
标识
DOI:10.1016/j.jhydrol.2022.128463
摘要

Short-term rainfall forecasting plays an important role in hydrologic modeling and water resource management problems such as flood warning and real time control of urban drainage systems. This paper compares the performances of three machine and deep learning-based rainfall forecasting approaches including a hybrid optimized-by-PSO support vector regression (PSO-SVR), long-short term memory (LSTM), and convolutional neural network (CNN). The approaches are used to develop both 5-minute and 15–minute ahead forecast models of rainfall depth based on datasets of Niavaran station, Tehran, Iran. Results of applying the models to all data points indicated that PSO-SVR and LSTM approaches performed almost the same and better than CNN. Subsequently, rainfall events were divided into four classes depending on their severity and duration using K-nearest neighbor method, and a separate forecast model was built for each of the classes. Classification of the events improved the forecast models accuracy where PSO-SVR and LSTM were the best approaches for the 15-minute and 5-minute ahead rainfall forecast models, respectively. Investigating the impact of more predictors on the forecast quality, adding differences of rainfall depths to model predictors improved the accuracy of PSO-SVR approach for the 5-minute ahead forecast model up to 13%. Furthermore, depending on the rainfall event, additional input variables considering rainfall depth fluctuations over shorter time periods than the forecast lead time increased the performances of the PSO-SVR and LSTM approaches between 3–15% and 2–10%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
4秒前
岁月轮回发布了新的文献求助10
4秒前
善学以致用应助dzx采纳,获得10
4秒前
AlisaWu完成签到,获得积分20
5秒前
7秒前
Ddddd完成签到,获得积分10
7秒前
Luminance发布了新的文献求助10
8秒前
simper发布了新的文献求助10
8秒前
heavenhorse应助达达采纳,获得30
9秒前
Ddddd发布了新的文献求助10
11秒前
s1ght发布了新的文献求助10
14秒前
14秒前
伊yan完成签到 ,获得积分10
17秒前
粗心的飞槐完成签到 ,获得积分10
17秒前
细腻的火车给细腻的火车的求助进行了留言
18秒前
Chen完成签到 ,获得积分10
18秒前
是小明啦完成签到,获得积分10
20秒前
chuanxizheng完成签到,获得积分10
20秒前
20秒前
21秒前
25秒前
30秒前
凌风完成签到,获得积分10
35秒前
悠旷完成签到 ,获得积分10
35秒前
38秒前
舒心台灯完成签到,获得积分10
39秒前
gxq完成签到,获得积分10
40秒前
吴晨曦完成签到 ,获得积分10
41秒前
机智匕完成签到,获得积分10
43秒前
hhh发布了新的文献求助20
44秒前
小蘑菇应助chuanxizheng采纳,获得10
46秒前
可爱的函函应助jacob258采纳,获得10
49秒前
49秒前
Robert完成签到 ,获得积分10
49秒前
BiuBiuBiu完成签到 ,获得积分10
55秒前
ccc发布了新的文献求助10
56秒前
56秒前
TOW应助jacob258采纳,获得10
58秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779606
求助须知:如何正确求助?哪些是违规求助? 3325116
关于积分的说明 10221269
捐赠科研通 3040209
什么是DOI,文献DOI怎么找? 1668673
邀请新用户注册赠送积分活动 798766
科研通“疑难数据库(出版商)”最低求助积分说明 758535