Short-term rainfall forecasting using machine learning-based approaches of PSO-SVR, LSTM and CNN

计算机科学 支持向量机 人工神经网络 人工智能 卷积神经网络 机器学习 期限(时间) 量子力学 物理
作者
Fatemeh Rezaei Aderyani,S. Jamshid Mousavi,Fatemeh Jafari
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:614: 128463-128463 被引量:124
标识
DOI:10.1016/j.jhydrol.2022.128463
摘要

Short-term rainfall forecasting plays an important role in hydrologic modeling and water resource management problems such as flood warning and real time control of urban drainage systems. This paper compares the performances of three machine and deep learning-based rainfall forecasting approaches including a hybrid optimized-by-PSO support vector regression (PSO-SVR), long-short term memory (LSTM), and convolutional neural network (CNN). The approaches are used to develop both 5-minute and 15–minute ahead forecast models of rainfall depth based on datasets of Niavaran station, Tehran, Iran. Results of applying the models to all data points indicated that PSO-SVR and LSTM approaches performed almost the same and better than CNN. Subsequently, rainfall events were divided into four classes depending on their severity and duration using K-nearest neighbor method, and a separate forecast model was built for each of the classes. Classification of the events improved the forecast models accuracy where PSO-SVR and LSTM were the best approaches for the 15-minute and 5-minute ahead rainfall forecast models, respectively. Investigating the impact of more predictors on the forecast quality, adding differences of rainfall depths to model predictors improved the accuracy of PSO-SVR approach for the 5-minute ahead forecast model up to 13%. Furthermore, depending on the rainfall event, additional input variables considering rainfall depth fluctuations over shorter time periods than the forecast lead time increased the performances of the PSO-SVR and LSTM approaches between 3–15% and 2–10%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Orange应助1234采纳,获得10
刚刚
所所应助myl采纳,获得10
刚刚
Litf发布了新的文献求助10
1秒前
xxxyuxi发布了新的文献求助30
1秒前
研友_ndk25L完成签到,获得积分10
1秒前
shuai15054发布了新的文献求助10
1秒前
英勇代荷完成签到,获得积分20
2秒前
strickland完成签到,获得积分10
2秒前
Fox发布了新的文献求助10
2秒前
Anne完成签到,获得积分10
3秒前
MrC完成签到,获得积分10
3秒前
cherish发布了新的文献求助10
3秒前
烟花应助悦耳的镜子采纳,获得10
4秒前
七月发布了新的文献求助10
4秒前
张艺发布了新的文献求助10
4秒前
5秒前
666发布了新的文献求助10
5秒前
luojimao完成签到,获得积分10
6秒前
6秒前
7秒前
乐乐乐乐乐乐应助韶华采纳,获得10
7秒前
Leo完成签到,获得积分10
7秒前
8秒前
许锦程完成签到,获得积分10
9秒前
coolkid完成签到 ,获得积分0
9秒前
9秒前
火星上发箍完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
踏实树叶发布了新的文献求助10
11秒前
bkagyin应助l玖采纳,获得10
11秒前
苹果路人发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
1234发布了新的文献求助10
13秒前
英勇代荷发布了新的文献求助10
13秒前
13秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4063933
求助须知:如何正确求助?哪些是违规求助? 3602342
关于积分的说明 11441006
捐赠科研通 3325489
什么是DOI,文献DOI怎么找? 1828106
邀请新用户注册赠送积分活动 898611
科研通“疑难数据库(出版商)”最低求助积分说明 819103