The Development of a Prediction Model Based on Random Survival Forest for the Postoperative Prognosis of Pancreatic Cancer: A SEER-Based Study

布里氏评分 随机森林 Lasso(编程语言) 比例危险模型 医学 回归 预测模型 生存分析 回归分析 统计 预测建模 选择(遗传算法) 人工智能 肿瘤科 计算机科学 内科学 机器学习 总体生存率 数学 万维网
作者
Jiaxi Lin,Minyue Yin,Lu Liu,Jingwen Gao,Chenyan Yu,Xiaolin Liu,Chun‐Fang Xu,Jinzhou Zhu
出处
期刊:Cancers [MDPI AG]
卷期号:14 (19): 4667-4667 被引量:29
标识
DOI:10.3390/cancers14194667
摘要

Accurate prediction for the prognosis of patients with pancreatic cancer (PC) is a emerge task nowadays. We aimed to develop survival models for postoperative PC patients, based on a novel algorithm, random survival forest (RSF), traditional Cox regression and neural networks (Deepsurv), using the Surveillance, Epidemiology, and End Results Program (SEER) database. A total of 3988 patients were included in this study. Eight clinicopathological features were selected using least absolute shrinkage and selection operator (LASSO) regression analysis and were utilized to develop the RSF model. The model was evaluated based on three dimensions: discrimination, calibration, and clinical benefit. It found that the RSF model predicted the cancer-specific survival (CSS) of the postoperative PC patients with a c-index of 0.723, which was higher than the models built by Cox regression (0.670) and Deepsurv (0.700). The Brier scores at 1, 3, and 5 years (0.188, 0.177, and 0.131) of the RSF model demonstrated the model's favorable calibration and the decision curve analysis illustrated the model's value of clinical implement. Moreover, the roles of the key variables were visualized in the Shapley Additive Explanations plotting. Lastly, the prediction model demonstrates value in risk stratification and individual prognosis. In this study, a high-performance prediction model for PC postoperative prognosis was developed, based on RSF The model presented significant strengths in the risk stratification and individual prognosis prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王洋发布了新的文献求助10
1秒前
冷傲山彤发布了新的文献求助10
1秒前
2秒前
无辜的半仙完成签到,获得积分10
3秒前
科研通AI2S应助欣慰曼彤采纳,获得10
4秒前
浮游应助秋子david采纳,获得10
7秒前
7秒前
gaogao完成签到,获得积分10
7秒前
8秒前
火焰迷踪发布了新的文献求助10
8秒前
小杭76应助热情的远锋采纳,获得10
8秒前
9秒前
失眠忆丹完成签到,获得积分10
9秒前
在雨里思考完成签到,获得积分10
10秒前
lisitian发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
ding应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
gkads应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
我是老大应助科研通管家采纳,获得10
11秒前
善学以致用应助memes采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
烤冷面应助科研通管家采纳,获得10
11秒前
杨凡发布了新的文献求助10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
14秒前
我就是我完成签到,获得积分10
14秒前
14秒前
17秒前
NexusExplorer应助王洋采纳,获得10
18秒前
Owen应助原子采纳,获得10
18秒前
冷傲山彤发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300615
求助须知:如何正确求助?哪些是违规求助? 4448440
关于积分的说明 13845918
捐赠科研通 4334192
什么是DOI,文献DOI怎么找? 2379428
邀请新用户注册赠送积分活动 1374534
关于科研通互助平台的介绍 1340164